Spaces:
Running
Running
File size: 9,587 Bytes
038f313 7de1759 fab24df 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 27c8b8d 038f313 3a64d68 98674ca fab24df 038f313 e13eb1b 7255410 fab24df e13eb1b 7255410 27c8b8d 7de1759 fab24df f7c4208 fab24df 52ad57a 038f313 fab24df 27c8b8d fab24df 27c8b8d fab24df 27c8b8d fab24df 77298b9 fab24df 27c8b8d fab24df 27c8b8d fab24df 27c8b8d fab24df 27c8b8d fab24df 27c8b8d 542c2ac e13eb1b f7c4208 fab24df 27c8b8d e7683ca fab24df 77298b9 27c8b8d 77298b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import gradio as gr
import os
from openai import OpenAI
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
featured_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: a user-provided custom model name (if any)
- featured_model: the user-selected model from the radio
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Featured model: {featured_model}")
# Convert seed to None if -1 (meaning "random")
if seed == -1:
seed = None
# Construct the conversation array required by the HF Inference API
messages = [{"role": "system", "content": system_message or ""}]
# Add conversation history
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# The latest user message
messages.append({"role": "user", "content": message})
# If custom_model is not empty, it overrides the featured model
model_to_use = custom_model.strip() if custom_model.strip() != "" else featured_model.strip()
# If somehow both are empty, default to an example model
if model_to_use == "":
model_to_use = "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Build the response from the streaming tokens
response = ""
print("Sending request to OpenAI API.")
# Streaming request to the HF Inference API
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield partial response so Gradio can display in real-time
yield response
print("Completed response generation.")
#
# Building the Gradio interface below
#
print("Building the Gradio interface with advanced features...")
# --- Create a list of 'Featured Models' for demonstration. You can customize as you wish. ---
models_list = (
"meta-llama/Llama-3.3-70B-Instruct",
"BigScience/bloom",
"openai/gpt-4",
"google/flan-t5-xxl",
"EleutherAI/gpt-j-6B",
"YourSpecialModel/awesome-13B",
)
# This function filters the above models_list by a given search term:
def filter_models(search_term):
filtered = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
# We’ll create a Chatbot in a Blocks layout to incorporate an Accordion for "Featured Models"
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("## Serverless-TextGen-Hub\nA comprehensive UI for text generation, including featured models and custom model overrides.")
# The Chatbot itself
chatbot = gr.Chatbot(label="TextGen Chatbot", height=600)
with gr.Row():
with gr.Column(scale=1):
# We create interactive UI elements that will feed into the 'respond' function
# System message
system_message = gr.Textbox(label="System message", placeholder="Set the system role instructions here.")
# Accordion for selecting the model
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
featured_model = gr.Radio(
label="Select a Featured Model Below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct", # default
interactive=True,
)
# Link the search box to filter the radio model choices
model_search.change(filter_models, inputs=model_search, outputs=featured_model)
# A text box to optionally override the featured model
custom_model = gr.Textbox(
label="Custom Model",
info="(Optional) Provide a custom HF model path. If non-empty, it overrides your featured model choice."
)
# Sliders
max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# The "chat" Column
with gr.Column(scale=2):
# We store the conversation history in a state variable
state = gr.State([]) # Each element in state is (user_message, assistant_message)
# Chat input box for the user
with gr.Row():
txt = gr.Textbox(
label="Enter your message",
placeholder="Type your request here, then press 'Submit'",
lines=3
)
# Button to submit the message
submit_btn = gr.Button("Submit", variant="primary")
#
# The 'respond' function is tied to the chatbot display.
# We'll define a small wrapper that updates the 'history' (state) each time.
#
def user_submit(user_message, chat_history):
"""
This function just adds the user message to the history and returns it.
The actual text generation will come from 'bot_respond' next.
"""
# Append new user message to the existing conversation
chat_history = chat_history + [(user_message, None)]
return "", chat_history
def bot_respond(chat_history, sys_msg, max_t, temp, top, freq_pen, s, custom_mod, feat_model):
"""
This function calls our 'respond' generator to get the text.
It updates the last message in chat_history with the bot's response as it streams.
"""
user_message = chat_history[-1][0] if len(chat_history) > 0 else ""
# We call the generator
bot_messages = respond(
user_message,
chat_history[:-1], # all but the last user message
sys_msg,
max_t,
temp,
top,
freq_pen,
s,
custom_mod,
feat_model,
)
# Stream the tokens back
final_bot_msg = ""
for token_text in bot_messages:
final_bot_msg = token_text
# We'll update the chatbot in real-time
chat_history[-1] = (user_message, final_bot_msg)
yield chat_history
# Tie the Submit button to the user_submit function, and then to bot_respond
submit_btn.click(
user_submit,
inputs=[txt, state],
outputs=[txt, state],
queue=False
).then(
bot_respond,
inputs=[state, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, custom_model, featured_model],
outputs=[chatbot],
queue=True
)
print("Interface construction complete. Ready to launch!")
# Launch the Gradio Blocks interface
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |