Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,297 +14,145 @@ client = OpenAI(
|
|
14 |
print("OpenAI client initialized.")
|
15 |
|
16 |
def respond(
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
max_tokens,
|
21 |
temperature,
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
-
|
26 |
-
|
27 |
):
|
28 |
"""
|
29 |
-
|
30 |
-
- user_message: the user's newly typed message
|
31 |
-
- chat_history: the list of (user, assistant) message pairs
|
32 |
-
- system_msg: the system instruction or system-level context
|
33 |
-
- max_tokens: the maximum number of tokens to generate
|
34 |
-
- temperature: sampling temperature
|
35 |
-
- top_p: top-p (nucleus) sampling
|
36 |
-
- frequency_penalty: penalize repeated tokens in the output
|
37 |
-
- seed: a fixed seed for reproducibility; -1 means 'random'
|
38 |
-
- featured_model: the chosen model name from 'Featured Models' radio
|
39 |
-
- custom_model: the optional custom model that overrides the featured one if provided
|
40 |
"""
|
41 |
-
|
42 |
-
print(f"
|
43 |
-
print(f"System message: {
|
44 |
-
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}
|
45 |
-
print(f"
|
46 |
print(f"Custom model: {custom_model}")
|
|
|
47 |
|
48 |
-
# Convert
|
49 |
if seed == -1:
|
50 |
seed = None
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
print(f"Model selected for inference: {model_to_use}")
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
try:
|
82 |
-
for resp_chunk in client.chat.completions.create(
|
83 |
-
model=model_to_use,
|
84 |
-
max_tokens=max_tokens,
|
85 |
-
stream=True,
|
86 |
-
temperature=temperature,
|
87 |
-
top_p=top_p,
|
88 |
-
frequency_penalty=frequency_penalty,
|
89 |
-
seed=seed,
|
90 |
-
messages=messages,
|
91 |
-
):
|
92 |
-
token_text = resp_chunk.choices[0].delta.content
|
93 |
-
response_so_far += token_text
|
94 |
-
# We yield back the updated message to display partial progress in the chatbot
|
95 |
-
yield response_so_far
|
96 |
-
except Exception as e:
|
97 |
-
# If there's an error, let's at least show it in the chat
|
98 |
-
error_text = f"[ERROR] {str(e)}"
|
99 |
-
print(error_text)
|
100 |
-
yield response_so_far + "\n\n" + error_text
|
101 |
|
102 |
print("Completed response generation.")
|
103 |
|
104 |
-
#
|
105 |
-
# BUILDING THE GRADIO INTERFACE BELOW
|
106 |
-
#
|
107 |
-
|
108 |
-
# List of featured models; adjust or replace these placeholders with real text-generation models
|
109 |
models_list = [
|
110 |
"meta-llama/Llama-3.3-70B-Instruct",
|
111 |
-
"
|
112 |
-
"
|
113 |
-
"
|
114 |
-
"
|
115 |
-
"google/flan-t5-xxl",
|
116 |
]
|
117 |
|
|
|
118 |
def filter_models(search_term):
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
with gr.Tab("Advanced Settings"):
|
165 |
-
with gr.Row():
|
166 |
-
max_tokens_slider = gr.Slider(
|
167 |
-
minimum=1,
|
168 |
-
maximum=4096,
|
169 |
-
value=512,
|
170 |
-
step=1,
|
171 |
-
label="Max new tokens"
|
172 |
-
)
|
173 |
-
temperature_slider = gr.Slider(
|
174 |
-
minimum=0.1,
|
175 |
-
maximum=4.0,
|
176 |
-
value=0.7,
|
177 |
-
step=0.1,
|
178 |
-
label="Temperature"
|
179 |
-
)
|
180 |
-
top_p_slider = gr.Slider(
|
181 |
-
minimum=0.1,
|
182 |
-
maximum=1.0,
|
183 |
-
value=0.95,
|
184 |
-
step=0.05,
|
185 |
-
label="Top-P"
|
186 |
-
)
|
187 |
-
with gr.Row():
|
188 |
-
freq_penalty_slider = gr.Slider(
|
189 |
-
minimum=-2.0,
|
190 |
-
maximum=2.0,
|
191 |
-
value=0.0,
|
192 |
-
step=0.1,
|
193 |
-
label="Frequency Penalty"
|
194 |
)
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
label="Seed (-1 for random)"
|
201 |
-
)
|
202 |
-
|
203 |
-
# Chat interface area: user input -> assistant output
|
204 |
-
with gr.Row():
|
205 |
-
chatbot = gr.Chatbot(
|
206 |
-
label="TextGen Chat",
|
207 |
-
height=500
|
208 |
-
)
|
209 |
-
|
210 |
-
# The user types a message here
|
211 |
-
user_input = gr.Textbox(
|
212 |
-
label="Your message",
|
213 |
-
placeholder="Type your text prompt here..."
|
214 |
-
)
|
215 |
-
|
216 |
-
# "Send" button triggers our respond() function, updates the chatbot
|
217 |
-
send_button = gr.Button("Send")
|
218 |
-
|
219 |
-
# A Clear Chat button to reset the conversation
|
220 |
-
clear_button = gr.Button("Clear Chat")
|
221 |
-
|
222 |
-
# Define how the Send button updates the state and chatbot
|
223 |
-
def user_submission(user_text, history):
|
224 |
-
"""
|
225 |
-
This function gets called first to add the user's message to the chat.
|
226 |
-
We return the updated chat_history with the user's message appended,
|
227 |
-
plus an empty string for the next user input box.
|
228 |
-
"""
|
229 |
-
if user_text.strip() == "":
|
230 |
-
return history, ""
|
231 |
-
# Append user message to chat
|
232 |
-
history = history + [(user_text, None)]
|
233 |
-
return history, ""
|
234 |
-
|
235 |
-
send_button.click(
|
236 |
-
fn=user_submission,
|
237 |
-
inputs=[user_input, chat_history],
|
238 |
-
outputs=[chat_history, user_input]
|
239 |
-
)
|
240 |
-
|
241 |
-
# Then we run the respond function (streaming) to generate the assistant message
|
242 |
-
def bot_response(
|
243 |
-
history,
|
244 |
-
system_msg,
|
245 |
-
max_tokens,
|
246 |
-
temperature,
|
247 |
-
top_p,
|
248 |
-
freq_penalty,
|
249 |
-
seed,
|
250 |
-
featured_model,
|
251 |
-
custom_model
|
252 |
-
):
|
253 |
-
"""
|
254 |
-
This function is called to generate the assistant's response
|
255 |
-
based on the conversation so far, system message, etc.
|
256 |
-
We do the streaming here.
|
257 |
-
"""
|
258 |
-
if not history:
|
259 |
-
yield history
|
260 |
-
# The last user message is in history[-1][0]
|
261 |
-
user_message = history[-1][0] if history else ""
|
262 |
-
# We pass everything to respond() generator
|
263 |
-
bot_stream = respond(
|
264 |
-
user_message=user_message,
|
265 |
-
chat_history=history[:-1], # all except the newly appended user message
|
266 |
-
system_msg=system_msg,
|
267 |
-
max_tokens=max_tokens,
|
268 |
-
temperature=temperature,
|
269 |
-
top_p=top_p,
|
270 |
-
frequency_penalty=freq_penalty,
|
271 |
-
seed=seed,
|
272 |
-
featured_model=featured_model,
|
273 |
-
custom_model=custom_model
|
274 |
-
)
|
275 |
-
partial_text = ""
|
276 |
-
for partial_text in bot_stream:
|
277 |
-
# We'll keep updating the last message in the conversation with partial_text
|
278 |
-
updated_history = history[:-1] + [(history[-1][0], partial_text)]
|
279 |
-
yield updated_history
|
280 |
-
|
281 |
-
send_button.click(
|
282 |
-
fn=bot_response,
|
283 |
-
inputs=[
|
284 |
-
chat_history,
|
285 |
-
system_msg,
|
286 |
-
max_tokens_slider,
|
287 |
-
temperature_slider,
|
288 |
-
top_p_slider,
|
289 |
-
freq_penalty_slider,
|
290 |
-
seed_slider,
|
291 |
-
model_radio,
|
292 |
-
custom_model_box
|
293 |
-
],
|
294 |
-
outputs=chatbot
|
295 |
-
)
|
296 |
-
|
297 |
-
# Clear chat just resets the state
|
298 |
-
def clear_chat():
|
299 |
-
return [], ""
|
300 |
|
301 |
-
|
302 |
-
fn=clear_chat,
|
303 |
-
inputs=[],
|
304 |
-
outputs=[chat_history, user_input]
|
305 |
-
)
|
306 |
|
307 |
-
# Launch the application
|
308 |
if __name__ == "__main__":
|
309 |
-
print("Launching the
|
310 |
demo.launch()
|
|
|
14 |
print("OpenAI client initialized.")
|
15 |
|
16 |
def respond(
|
17 |
+
message,
|
18 |
+
history: list[tuple[str, str]],
|
19 |
+
system_message,
|
20 |
max_tokens,
|
21 |
temperature,
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
+
custom_model,
|
26 |
+
selected_model
|
27 |
):
|
28 |
"""
|
29 |
+
Handles the chatbot response generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
+
print(f"Received message: {message}")
|
32 |
+
print(f"History: {history}")
|
33 |
+
print(f"System message: {system_message}")
|
34 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
35 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
36 |
print(f"Custom model: {custom_model}")
|
37 |
+
print(f"Selected model: {selected_model}")
|
38 |
|
39 |
+
# Convert seed to None if -1 (meaning random)
|
40 |
if seed == -1:
|
41 |
seed = None
|
42 |
|
43 |
+
# Construct the messages array required by the API
|
44 |
+
messages = [{"role": "system", "content": system_message}]
|
45 |
+
|
46 |
+
# Add conversation history to the context
|
47 |
+
for val in history:
|
48 |
+
user_part = val[0]
|
49 |
+
assistant_part = val[1]
|
50 |
+
if user_part:
|
51 |
+
messages.append({"role": "user", "content": user_part})
|
52 |
+
print(f"Added user message to context: {user_part}")
|
53 |
+
if assistant_part:
|
54 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
55 |
+
print(f"Added assistant message to context: {assistant_part}")
|
56 |
+
|
57 |
+
# Append the latest user message
|
58 |
+
messages.append({"role": "user", "content": message})
|
59 |
+
|
60 |
+
# Determine which model to use
|
61 |
+
model_to_use = (
|
62 |
+
custom_model.strip()
|
63 |
+
if custom_model.strip() != ""
|
64 |
+
else selected_model.strip()
|
65 |
+
)
|
66 |
print(f"Model selected for inference: {model_to_use}")
|
67 |
|
68 |
+
# Start with an empty string to build the response as tokens stream in
|
69 |
+
response = ""
|
70 |
+
print("Sending request to OpenAI API.")
|
71 |
+
|
72 |
+
# Make the streaming request to the HF Inference API via openai-like client
|
73 |
+
for message_chunk in client.chat.completions.create(
|
74 |
+
model=model_to_use,
|
75 |
+
max_tokens=max_tokens,
|
76 |
+
stream=True,
|
77 |
+
temperature=temperature,
|
78 |
+
top_p=top_p,
|
79 |
+
frequency_penalty=frequency_penalty,
|
80 |
+
seed=seed,
|
81 |
+
messages=messages,
|
82 |
+
):
|
83 |
+
# Extract the token text from the response chunk
|
84 |
+
token_text = message_chunk.choices[0].delta.content
|
85 |
+
print(f"Received token: {token_text}")
|
86 |
+
response += token_text
|
87 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
print("Completed response generation.")
|
90 |
|
91 |
+
# Predefined list of placeholder models for the Featured Models accordion
|
|
|
|
|
|
|
|
|
92 |
models_list = [
|
93 |
"meta-llama/Llama-3.3-70B-Instruct",
|
94 |
+
"bigscience/bloom-7b1",
|
95 |
+
"EleutherAI/gpt-neo-2.7B",
|
96 |
+
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
97 |
+
"HuggingFace/distilgpt2",
|
|
|
98 |
]
|
99 |
|
100 |
+
# Function to filter models based on search input
|
101 |
def filter_models(search_term):
|
102 |
+
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
103 |
+
return gr.update(choices=filtered_models)
|
104 |
+
|
105 |
+
# Create a Chatbot component with a specified height
|
106 |
+
chatbot = gr.Chatbot(height=600)
|
107 |
+
print("Chatbot interface created.")
|
108 |
+
|
109 |
+
# Create the Gradio ChatInterface
|
110 |
+
# Added "Featured Models" accordion and integrated filtering
|
111 |
+
demo = gr.Interface(
|
112 |
+
fn=respond,
|
113 |
+
inputs=[
|
114 |
+
gr.Textbox(value="", label="System message"),
|
115 |
+
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
116 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
117 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
118 |
+
gr.Slider(
|
119 |
+
minimum=-2.0,
|
120 |
+
maximum=2.0,
|
121 |
+
value=0.0,
|
122 |
+
step=0.1,
|
123 |
+
label="Frequency Penalty"
|
124 |
+
),
|
125 |
+
gr.Slider(
|
126 |
+
minimum=-1,
|
127 |
+
maximum=65535, # Arbitrary upper limit for demonstration
|
128 |
+
value=-1,
|
129 |
+
step=1,
|
130 |
+
label="Seed (-1 for random)"
|
131 |
+
),
|
132 |
+
gr.Textbox(
|
133 |
+
value="",
|
134 |
+
label="Custom Model",
|
135 |
+
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty.",
|
136 |
+
),
|
137 |
+
# Add Featured Models accordion
|
138 |
+
gr.Accordion("Featured Models", open=True, children=[
|
139 |
+
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1).change(
|
140 |
+
filter_models, inputs=["value"], outputs="choices"
|
141 |
+
),
|
142 |
+
gr.Radio(
|
143 |
+
label="Select a featured model",
|
144 |
+
value="meta-llama/Llama-3.3-70B-Instruct",
|
145 |
+
choices=models_list,
|
146 |
+
elem_id="model-radio",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
+
]),
|
149 |
+
],
|
150 |
+
outputs=gr.Chatbot(height=600),
|
151 |
+
theme="Nymbo/Nymbo_Theme",
|
152 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
print("Gradio interface initialized.")
|
|
|
|
|
|
|
|
|
155 |
|
|
|
156 |
if __name__ == "__main__":
|
157 |
+
print("Launching the demo application.")
|
158 |
demo.launch()
|