Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
-
from openai import OpenAI
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Retrieve the access token from the environment variable
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
@@ -13,291 +17,313 @@ client = OpenAI(
|
|
13 |
)
|
14 |
print("OpenAI client initialized.")
|
15 |
|
|
|
16 |
def respond(
|
17 |
-
|
18 |
-
history
|
19 |
system_message,
|
20 |
max_tokens,
|
21 |
temperature,
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
-
|
26 |
-
|
27 |
):
|
28 |
"""
|
29 |
This function handles the chatbot response. It takes in:
|
30 |
-
-
|
31 |
-
- history: the list of previous messages, each as
|
32 |
- system_message: the system prompt
|
33 |
- max_tokens: the maximum number of tokens to generate in the response
|
34 |
- temperature: sampling temperature
|
35 |
- top_p: top-p (nucleus) sampling
|
36 |
- frequency_penalty: penalize repeated tokens in the output
|
37 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
38 |
-
-
|
39 |
-
-
|
40 |
"""
|
41 |
|
42 |
-
print(f"
|
43 |
-
print(f"History: {history}")
|
44 |
print(f"System message: {system_message}")
|
45 |
-
print(f"
|
46 |
-
print(f"
|
47 |
-
print(f"
|
48 |
-
print(f"
|
49 |
|
50 |
# Convert seed to None if -1 (meaning random)
|
51 |
if seed == -1:
|
52 |
seed = None
|
53 |
|
54 |
-
# Determine which model to use
|
55 |
-
|
|
|
|
|
|
|
56 |
model_to_use = custom_model.strip()
|
57 |
-
|
|
|
58 |
else:
|
59 |
-
model_to_use =
|
60 |
-
print(f"Using Featured Model: {model_to_use}")
|
61 |
|
62 |
-
|
|
|
|
|
63 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
try:
|
84 |
-
# Make the streaming request to the HF Inference API via openai-like client
|
85 |
-
for message_chunk in client.chat.completions.create(
|
86 |
-
model=model_to_use, # Use either the user-provided custom model or selected featured model
|
87 |
-
max_tokens=max_tokens,
|
88 |
-
stream=True, # Stream the response
|
89 |
-
temperature=temperature,
|
90 |
-
top_p=top_p,
|
91 |
-
frequency_penalty=frequency_penalty,
|
92 |
-
seed=seed,
|
93 |
-
messages=messages,
|
94 |
-
):
|
95 |
-
# Extract the token text from the response chunk
|
96 |
-
token_text = message_chunk.choices[0].delta.content
|
97 |
-
print(f"Received token: {token_text}")
|
98 |
-
response += token_text
|
99 |
-
# Yield the partial response to Gradio so it can display in real-time
|
100 |
-
yield response
|
101 |
-
except Exception as e:
|
102 |
-
print(f"Error during API call: {e}")
|
103 |
-
yield f"An error occurred: {e}"
|
104 |
|
105 |
print("Completed response generation.")
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
#
|
112 |
-
|
113 |
-
"meta-llama/Llama-
|
114 |
-
"
|
115 |
-
"
|
116 |
-
"
|
117 |
]
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
121 |
-
gr.Markdown("# Serverless-TextGen-Hub 📝🤖")
|
122 |
gr.Markdown(
|
123 |
"""
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
"""
|
126 |
)
|
127 |
-
|
128 |
-
with gr.Row():
|
129 |
-
# Chatbot component
|
130 |
-
chatbot_component = gr.Chatbot(height=600)
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
134 |
system_message = gr.Textbox(
|
135 |
-
value="You are a helpful assistant.",
|
136 |
label="System Message",
|
137 |
-
|
138 |
lines=2,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
label="
|
145 |
-
placeholder="
|
146 |
-
lines=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
-
# Run button
|
149 |
-
run_button = gr.Button("Send", variant="primary")
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
maximum=4096,
|
157 |
-
value=512,
|
158 |
-
step=1,
|
159 |
-
label="Max New Tokens",
|
160 |
-
)
|
161 |
-
temperature = gr.Slider(
|
162 |
-
minimum=0.1,
|
163 |
-
maximum=4.0,
|
164 |
-
value=0.7,
|
165 |
-
step=0.1,
|
166 |
-
label="Temperature",
|
167 |
-
)
|
168 |
-
top_p = gr.Slider(
|
169 |
-
minimum=0.1,
|
170 |
-
maximum=1.0,
|
171 |
-
value=0.95,
|
172 |
-
step=0.05,
|
173 |
-
label="Top-P",
|
174 |
-
)
|
175 |
-
frequency_penalty = gr.Slider(
|
176 |
-
minimum=-2.0,
|
177 |
-
maximum=2.0,
|
178 |
-
value=0.0,
|
179 |
-
step=0.1,
|
180 |
-
label="Frequency Penalty",
|
181 |
-
)
|
182 |
-
seed = gr.Slider(
|
183 |
-
minimum=-1,
|
184 |
-
maximum=65535, # Arbitrary upper limit for demonstration
|
185 |
-
value=-1,
|
186 |
-
step=1,
|
187 |
-
label="Seed (-1 for random)",
|
188 |
-
)
|
189 |
-
custom_model = gr.Textbox(
|
190 |
-
value="",
|
191 |
-
label="Custom Model",
|
192 |
-
info="(Optional) Provide a custom Hugging Face model path. This will override the selected featured model if not empty.",
|
193 |
-
placeholder="e.g., meta-llama/Llama-3.3-70B-Instruct",
|
194 |
-
)
|
195 |
-
|
196 |
-
with gr.Accordion("Featured Models", open=True):
|
197 |
-
with gr.Column():
|
198 |
-
model_search = gr.Textbox(
|
199 |
-
label="Filter Models",
|
200 |
-
placeholder="Search for a featured model...",
|
201 |
-
lines=1,
|
202 |
-
)
|
203 |
-
featured_model = gr.Radio(
|
204 |
-
label="Select a model below",
|
205 |
-
value=FEATURED_MODELS_LIST[0],
|
206 |
-
choices=FEATURED_MODELS_LIST,
|
207 |
-
interactive=True,
|
208 |
-
)
|
209 |
-
|
210 |
-
# Function to filter featured models based on search input
|
211 |
-
def filter_featured_models(search_term):
|
212 |
-
if not search_term:
|
213 |
-
return gr.update(choices=FEATURED_MODELS_LIST, value=FEATURED_MODELS_LIST[0])
|
214 |
-
filtered = [model for model in FEATURED_MODELS_LIST if search_term.lower() in model.lower()]
|
215 |
-
if not filtered:
|
216 |
-
return gr.update(choices=[], value=None)
|
217 |
-
return gr.update(choices=filtered, value=filtered[0])
|
218 |
-
|
219 |
-
# Update featured_model choices based on search
|
220 |
-
model_search.change(
|
221 |
-
fn=filter_featured_models,
|
222 |
-
inputs=model_search,
|
223 |
-
outputs=featured_model,
|
224 |
)
|
225 |
|
226 |
-
#
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
system_message=system_msg,
|
236 |
-
max_tokens=max_tok,
|
237 |
-
temperature=temp,
|
238 |
-
top_p=tp,
|
239 |
-
frequency_penalty=freq_pen,
|
240 |
-
seed=sd,
|
241 |
-
custom_model=custom_mod,
|
242 |
-
selected_featured_model=selected_feat_mod,
|
243 |
)
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
-
#
|
247 |
-
|
248 |
-
|
|
|
249 |
inputs=[
|
250 |
-
|
251 |
-
chatbot_component, # history
|
252 |
system_message,
|
253 |
max_tokens,
|
254 |
temperature,
|
255 |
top_p,
|
256 |
frequency_penalty,
|
257 |
seed,
|
258 |
-
|
259 |
-
|
260 |
-
],
|
261 |
-
outputs=[
|
262 |
-
chatbot_component,
|
263 |
-
chatbot_component, # Updated history
|
264 |
],
|
|
|
|
|
|
|
265 |
)
|
266 |
|
267 |
-
#
|
268 |
-
|
269 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
270 |
inputs=[
|
271 |
-
|
272 |
-
chatbot_component, # history
|
273 |
system_message,
|
274 |
max_tokens,
|
275 |
temperature,
|
276 |
top_p,
|
277 |
frequency_penalty,
|
278 |
seed,
|
279 |
-
|
280 |
-
|
281 |
-
],
|
282 |
-
outputs=[
|
283 |
-
chatbot_component,
|
284 |
-
chatbot_component, # Updated history
|
285 |
],
|
|
|
|
|
286 |
)
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
.gradio-container {background-color: #f9f9f9;}
|
295 |
-
`;
|
296 |
-
document.head.appendChild(style);
|
297 |
-
}
|
298 |
""")
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
+
from openai import OpenAI
|
4 |
+
|
5 |
+
################################################
|
6 |
+
# INITIAL SETUP
|
7 |
+
################################################
|
8 |
|
9 |
# Retrieve the access token from the environment variable
|
10 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
17 |
)
|
18 |
print("OpenAI client initialized.")
|
19 |
|
20 |
+
# Our main response-generating function
|
21 |
def respond(
|
22 |
+
user_message,
|
23 |
+
history,
|
24 |
system_message,
|
25 |
max_tokens,
|
26 |
temperature,
|
27 |
top_p,
|
28 |
frequency_penalty,
|
29 |
seed,
|
30 |
+
featured_model,
|
31 |
+
custom_model
|
32 |
):
|
33 |
"""
|
34 |
This function handles the chatbot response. It takes in:
|
35 |
+
- user_message: the user's new message
|
36 |
+
- history: the list of previous messages, each as [user_text, assistant_text]
|
37 |
- system_message: the system prompt
|
38 |
- max_tokens: the maximum number of tokens to generate in the response
|
39 |
- temperature: sampling temperature
|
40 |
- top_p: top-p (nucleus) sampling
|
41 |
- frequency_penalty: penalize repeated tokens in the output
|
42 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
43 |
+
- featured_model: the user-chosen model from the radio button
|
44 |
+
- custom_model: a user-specified custom model that overrides featured_model if not empty
|
45 |
"""
|
46 |
|
47 |
+
print(f"New user message: {user_message}")
|
48 |
+
print(f"History so far: {history}")
|
49 |
print(f"System message: {system_message}")
|
50 |
+
print(f"max_tokens: {max_tokens}, temperature: {temperature}, top_p: {top_p}")
|
51 |
+
print(f"frequency_penalty: {frequency_penalty}, seed: {seed}")
|
52 |
+
print(f"Featured Model: {featured_model}")
|
53 |
+
print(f"Custom Model: {custom_model}")
|
54 |
|
55 |
# Convert seed to None if -1 (meaning random)
|
56 |
if seed == -1:
|
57 |
seed = None
|
58 |
|
59 |
+
# Determine which model to use
|
60 |
+
# If the user typed something in custom_model, that overrides the featured model
|
61 |
+
# Otherwise we use the model selected in the radio. If neither, default to the example "meta-llama..."
|
62 |
+
model_to_use = None
|
63 |
+
if custom_model.strip():
|
64 |
model_to_use = custom_model.strip()
|
65 |
+
elif featured_model is not None and featured_model.strip():
|
66 |
+
model_to_use = featured_model.strip()
|
67 |
else:
|
68 |
+
model_to_use = "meta-llama/Llama-3.3-70B-Instruct"
|
|
|
69 |
|
70 |
+
print(f"Model selected for inference: {model_to_use}")
|
71 |
+
|
72 |
+
# Construct the conversation messages for the HF Inference API
|
73 |
messages = [{"role": "system", "content": system_message}]
|
74 |
+
for user_text, assistant_text in history:
|
75 |
+
if user_text:
|
76 |
+
messages.append({"role": "user", "content": user_text})
|
77 |
+
if assistant_text:
|
78 |
+
messages.append({"role": "assistant", "content": assistant_text})
|
79 |
+
messages.append({"role": "user", "content": user_message})
|
80 |
+
|
81 |
+
# We'll collect and stream the response
|
82 |
+
response_so_far = ""
|
83 |
|
84 |
+
# Make the streaming request to the HF Inference API
|
85 |
+
print("Sending request to OpenAI/Hugging Face Inference API...")
|
86 |
+
for message_chunk in client.chat.completions.create(
|
87 |
+
model=model_to_use,
|
88 |
+
max_tokens=max_tokens,
|
89 |
+
stream=True,
|
90 |
+
temperature=temperature,
|
91 |
+
top_p=top_p,
|
92 |
+
frequency_penalty=frequency_penalty,
|
93 |
+
seed=seed,
|
94 |
+
messages=messages,
|
95 |
+
):
|
96 |
+
# The content for the partial chunk
|
97 |
+
token_text = message_chunk.choices[0].delta.content
|
98 |
+
response_so_far += token_text
|
99 |
+
# Return partial response to Gradio to display in real-time
|
100 |
+
yield response_so_far
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
print("Completed response generation.")
|
103 |
|
104 |
+
################################################
|
105 |
+
# GRADIO UI + STATE MANAGEMENT
|
106 |
+
################################################
|
107 |
+
|
108 |
+
def user_submit(user_message, history):
|
109 |
+
"""
|
110 |
+
This function is called when the user sends a message.
|
111 |
+
We simply add the user message to the conversation history.
|
112 |
+
"""
|
113 |
+
print("user_submit triggered.")
|
114 |
+
# Append the new user message to history
|
115 |
+
if not history:
|
116 |
+
history = []
|
117 |
+
history = history + [[user_message, None]]
|
118 |
+
return history, ""
|
119 |
+
|
120 |
+
def bot_reply(history, system_message, max_tokens, temperature, top_p,
|
121 |
+
frequency_penalty, seed, featured_model, custom_model):
|
122 |
+
"""
|
123 |
+
This function is triggered to produce the bot's response after the user has submitted.
|
124 |
+
We call 'respond' for streaming text.
|
125 |
+
"""
|
126 |
+
print("bot_reply triggered.")
|
127 |
+
|
128 |
+
# The last conversation item has user_message, None
|
129 |
+
user_message = history[-1][0]
|
130 |
+
|
131 |
+
# We will stream the partial responses from 'respond'
|
132 |
+
bot_response = respond(
|
133 |
+
user_message=user_message,
|
134 |
+
history=history[:-1], # all items except the last, because we pass the last user msg separately
|
135 |
+
system_message=system_message,
|
136 |
+
max_tokens=max_tokens,
|
137 |
+
temperature=temperature,
|
138 |
+
top_p=top_p,
|
139 |
+
frequency_penalty=frequency_penalty,
|
140 |
+
seed=seed,
|
141 |
+
featured_model=featured_model,
|
142 |
+
custom_model=custom_model
|
143 |
+
)
|
144 |
+
|
145 |
+
# As we yield from the generator, we update the last item in history with the partial response
|
146 |
+
# Gradio streaming logic: yield the partial updates as they come in
|
147 |
+
for partial_text in bot_response:
|
148 |
+
history[-1][1] = partial_text
|
149 |
+
yield history
|
150 |
|
151 |
+
# We define a small list of placeholder featured models for demonstration
|
152 |
+
models_list = [
|
153 |
+
"meta-llama/Llama-2-13B-Chat-hf",
|
154 |
+
"bigscience/bloom",
|
155 |
+
"EleutherAI/gpt-neo-2.7B",
|
156 |
+
"meta-llama/Llama-3.3-70B-Instruct"
|
157 |
]
|
158 |
|
159 |
+
def filter_models(search_term):
|
160 |
+
"""
|
161 |
+
Filter function triggered when user types in the model_search box.
|
162 |
+
Returns an updated list of models that contain the search term.
|
163 |
+
"""
|
164 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
165 |
+
return gr.update(choices=filtered)
|
166 |
+
|
167 |
+
|
168 |
+
################################################
|
169 |
+
# BUILDING THE GRADIO LAYOUT
|
170 |
+
################################################
|
171 |
+
|
172 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
|
173 |
gr.Markdown(
|
174 |
"""
|
175 |
+
# Serverless-TextGen-Hub
|
176 |
+
**A UI for text generation using Hugging Face's Inference API.**
|
177 |
+
|
178 |
+
Below is a simple chat interface. You can pick from **Featured Models** or specify a **Custom Model**
|
179 |
+
to override the choice. If you're not sure, just use the default.
|
180 |
"""
|
181 |
)
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
# State to hold the conversation history, will be a list of [user, bot]
|
184 |
+
conversation_state = gr.State([])
|
185 |
+
|
186 |
+
# Row for system message + advanced settings
|
187 |
+
with gr.Accordion("Advanced Settings", open=False):
|
188 |
system_message = gr.Textbox(
|
|
|
189 |
label="System Message",
|
190 |
+
value="You are a helpful assistant.",
|
191 |
lines=2,
|
192 |
+
info="Provides background or personality instructions to the model."
|
193 |
+
)
|
194 |
+
max_tokens = gr.Slider(
|
195 |
+
minimum=1,
|
196 |
+
maximum=4096,
|
197 |
+
value=512,
|
198 |
+
step=1,
|
199 |
+
label="Max new tokens"
|
200 |
+
)
|
201 |
+
temperature = gr.Slider(
|
202 |
+
minimum=0.1,
|
203 |
+
maximum=4.0,
|
204 |
+
value=0.7,
|
205 |
+
step=0.1,
|
206 |
+
label="Temperature"
|
207 |
+
)
|
208 |
+
top_p = gr.Slider(
|
209 |
+
minimum=0.1,
|
210 |
+
maximum=1.0,
|
211 |
+
value=0.95,
|
212 |
+
step=0.05,
|
213 |
+
label="Top-P"
|
214 |
+
)
|
215 |
+
frequency_penalty = gr.Slider(
|
216 |
+
minimum=-2.0,
|
217 |
+
maximum=2.0,
|
218 |
+
value=0.0,
|
219 |
+
step=0.1,
|
220 |
+
label="Frequency Penalty"
|
221 |
+
)
|
222 |
+
seed = gr.Slider(
|
223 |
+
minimum=-1,
|
224 |
+
maximum=65535,
|
225 |
+
value=-1,
|
226 |
+
step=1,
|
227 |
+
label="Seed (-1 for random)"
|
228 |
)
|
229 |
|
230 |
+
# Featured Models + filtering
|
231 |
+
with gr.Accordion("Featured Models", open=False):
|
232 |
+
model_search = gr.Textbox(
|
233 |
+
label="Filter Models",
|
234 |
+
placeholder="Search for a featured model...",
|
235 |
+
lines=1
|
236 |
+
)
|
237 |
+
featured_model_radio = gr.Radio(
|
238 |
+
label="Select a featured model below",
|
239 |
+
choices=models_list,
|
240 |
+
value=models_list[0], # default selection
|
241 |
+
interactive=True
|
242 |
+
)
|
243 |
+
model_search.change(
|
244 |
+
filter_models,
|
245 |
+
inputs=model_search,
|
246 |
+
outputs=featured_model_radio
|
247 |
)
|
|
|
|
|
248 |
|
249 |
+
# This is the Custom Model box (overrides Featured Models if not empty)
|
250 |
+
custom_model = gr.Textbox(
|
251 |
+
label="Custom Model",
|
252 |
+
value="",
|
253 |
+
info="(Optional) Provide a custom HF model path. If not empty, it overrides the Featured Model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
)
|
255 |
|
256 |
+
# The main Chatbot interface
|
257 |
+
chatbot = gr.Chatbot(height=600)
|
258 |
+
|
259 |
+
# Textbox for the user to type a new message
|
260 |
+
with gr.Row():
|
261 |
+
user_input = gr.Textbox(
|
262 |
+
show_label=False,
|
263 |
+
placeholder="Type your message here (press enter or click 'Submit')",
|
264 |
+
lines=2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
)
|
266 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
267 |
+
|
268 |
+
# The user submits -> we update the conversation state
|
269 |
+
submit_btn.click(
|
270 |
+
fn=user_submit,
|
271 |
+
inputs=[user_input, conversation_state],
|
272 |
+
outputs=[conversation_state, user_input],
|
273 |
+
)
|
274 |
|
275 |
+
# Then the bot replies, streaming the output
|
276 |
+
# We pass all required arguments from the advanced settings, plus the model selection boxes
|
277 |
+
submit_btn.click(
|
278 |
+
fn=bot_reply,
|
279 |
inputs=[
|
280 |
+
conversation_state,
|
|
|
281 |
system_message,
|
282 |
max_tokens,
|
283 |
temperature,
|
284 |
top_p,
|
285 |
frequency_penalty,
|
286 |
seed,
|
287 |
+
featured_model_radio,
|
288 |
+
custom_model
|
|
|
|
|
|
|
|
|
289 |
],
|
290 |
+
outputs=[chatbot],
|
291 |
+
# 'bot_reply' is a generator, so we set streaming=True:
|
292 |
+
queue=True
|
293 |
)
|
294 |
|
295 |
+
# We also allow pressing Enter in user_input to do the same thing
|
296 |
+
user_input.submit(
|
297 |
+
fn=user_submit,
|
298 |
+
inputs=[user_input, conversation_state],
|
299 |
+
outputs=[conversation_state, user_input],
|
300 |
+
)
|
301 |
+
user_input.submit(
|
302 |
+
fn=bot_reply,
|
303 |
inputs=[
|
304 |
+
conversation_state,
|
|
|
305 |
system_message,
|
306 |
max_tokens,
|
307 |
temperature,
|
308 |
top_p,
|
309 |
frequency_penalty,
|
310 |
seed,
|
311 |
+
featured_model_radio,
|
312 |
+
custom_model
|
|
|
|
|
|
|
|
|
313 |
],
|
314 |
+
outputs=[chatbot],
|
315 |
+
queue=True
|
316 |
)
|
317 |
|
318 |
+
gr.HTML("""
|
319 |
+
<br>
|
320 |
+
<p style='text-align:center;'>
|
321 |
+
Developed by <strong>Nymbo</strong>.
|
322 |
+
Powered by <strong>Hugging Face Inference API</strong>.
|
323 |
+
</p>
|
|
|
|
|
|
|
|
|
324 |
""")
|
325 |
|
326 |
+
# Finally, launch the app
|
327 |
+
if __name__ == "__main__":
|
328 |
+
print("Launching the Serverless-TextGen-Hub application...")
|
329 |
+
demo.launch()
|