Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
from openai import OpenAI
|
3 |
import os
|
|
|
4 |
|
5 |
# Retrieve the access token from the environment variable
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
@@ -22,7 +22,8 @@ def respond(
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
-
custom_model
|
|
|
26 |
):
|
27 |
"""
|
28 |
This function handles the chatbot response. It takes in:
|
@@ -34,7 +35,8 @@ def respond(
|
|
34 |
- top_p: top-p (nucleus) sampling
|
35 |
- frequency_penalty: penalize repeated tokens in the output
|
36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
37 |
-
- custom_model:
|
|
|
38 |
"""
|
39 |
|
40 |
print(f"Received message: {message}")
|
@@ -43,15 +45,16 @@ def respond(
|
|
43 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
45 |
print(f"Custom model: {custom_model}")
|
|
|
46 |
|
47 |
-
# Convert seed to None if -1 (meaning random)
|
48 |
if seed == -1:
|
49 |
seed = None
|
50 |
|
51 |
-
# Construct the
|
52 |
-
messages = [{"role": "system", "content": system_message}]
|
53 |
|
54 |
-
# Add conversation history
|
55 |
for val in history:
|
56 |
user_part = val[0]
|
57 |
assistant_part = val[1]
|
@@ -62,22 +65,26 @@ def respond(
|
|
62 |
messages.append({"role": "assistant", "content": assistant_part})
|
63 |
print(f"Added assistant message to context: {assistant_part}")
|
64 |
|
65 |
-
#
|
66 |
messages.append({"role": "user", "content": message})
|
67 |
|
68 |
-
#
|
69 |
-
model_to_use = custom_model.strip() if custom_model.strip() != "" else
|
|
|
|
|
|
|
|
|
70 |
print(f"Model selected for inference: {model_to_use}")
|
71 |
|
72 |
-
#
|
73 |
response = ""
|
74 |
print("Sending request to OpenAI API.")
|
75 |
|
76 |
-
#
|
77 |
for message_chunk in client.chat.completions.create(
|
78 |
-
model=model_to_use,
|
79 |
max_tokens=max_tokens,
|
80 |
-
stream=True,
|
81 |
temperature=temperature,
|
82 |
top_p=top_p,
|
83 |
frequency_penalty=frequency_penalty,
|
@@ -88,68 +95,178 @@ def respond(
|
|
88 |
token_text = message_chunk.choices[0].delta.content
|
89 |
print(f"Received token: {token_text}")
|
90 |
response += token_text
|
91 |
-
# Yield
|
92 |
yield response
|
93 |
|
94 |
print("Completed response generation.")
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
#
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
value=512,
|
110 |
-
step=1,
|
111 |
-
label="Max new tokens"
|
112 |
-
),
|
113 |
-
gr.Slider(
|
114 |
-
minimum=0.1,
|
115 |
-
maximum=4.0,
|
116 |
-
value=0.7,
|
117 |
-
step=0.1,
|
118 |
-
label="Temperature"
|
119 |
-
),
|
120 |
-
gr.Slider(
|
121 |
-
minimum=0.1,
|
122 |
-
maximum=1.0,
|
123 |
-
value=0.95,
|
124 |
-
step=0.05,
|
125 |
-
label="Top-P"
|
126 |
-
),
|
127 |
-
gr.Slider(
|
128 |
-
minimum=-2.0,
|
129 |
-
maximum=2.0,
|
130 |
-
value=0.0,
|
131 |
-
step=0.1,
|
132 |
-
label="Frequency Penalty"
|
133 |
-
),
|
134 |
-
gr.Slider(
|
135 |
-
minimum=-1,
|
136 |
-
maximum=65535, # Arbitrary upper limit for demonstration
|
137 |
-
value=-1,
|
138 |
-
step=1,
|
139 |
-
label="Seed (-1 for random)"
|
140 |
-
),
|
141 |
-
gr.Textbox(
|
142 |
-
value="",
|
143 |
-
label="Custom Model",
|
144 |
-
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty."
|
145 |
-
),
|
146 |
-
],
|
147 |
-
fill_height=True,
|
148 |
-
chatbot=chatbot,
|
149 |
-
theme="Nymbo/Nymbo_Theme",
|
150 |
)
|
151 |
-
print("Gradio interface initialized.")
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
if __name__ == "__main__":
|
154 |
print("Launching the demo application.")
|
155 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
+
from openai import OpenAI
|
4 |
|
5 |
# Retrieve the access token from the environment variable
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
+
custom_model,
|
26 |
+
featured_model
|
27 |
):
|
28 |
"""
|
29 |
This function handles the chatbot response. It takes in:
|
|
|
35 |
- top_p: top-p (nucleus) sampling
|
36 |
- frequency_penalty: penalize repeated tokens in the output
|
37 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
38 |
+
- custom_model: a user-provided custom model name (if any)
|
39 |
+
- featured_model: the user-selected model from the radio
|
40 |
"""
|
41 |
|
42 |
print(f"Received message: {message}")
|
|
|
45 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
46 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
47 |
print(f"Custom model: {custom_model}")
|
48 |
+
print(f"Featured model: {featured_model}")
|
49 |
|
50 |
+
# Convert seed to None if -1 (meaning "random")
|
51 |
if seed == -1:
|
52 |
seed = None
|
53 |
|
54 |
+
# Construct the conversation array required by the HF Inference API
|
55 |
+
messages = [{"role": "system", "content": system_message or ""}]
|
56 |
|
57 |
+
# Add conversation history
|
58 |
for val in history:
|
59 |
user_part = val[0]
|
60 |
assistant_part = val[1]
|
|
|
65 |
messages.append({"role": "assistant", "content": assistant_part})
|
66 |
print(f"Added assistant message to context: {assistant_part}")
|
67 |
|
68 |
+
# The latest user message
|
69 |
messages.append({"role": "user", "content": message})
|
70 |
|
71 |
+
# If custom_model is not empty, it overrides the featured model
|
72 |
+
model_to_use = custom_model.strip() if custom_model.strip() != "" else featured_model.strip()
|
73 |
+
# If somehow both are empty, default to an example model
|
74 |
+
if model_to_use == "":
|
75 |
+
model_to_use = "meta-llama/Llama-3.3-70B-Instruct"
|
76 |
+
|
77 |
print(f"Model selected for inference: {model_to_use}")
|
78 |
|
79 |
+
# Build the response from the streaming tokens
|
80 |
response = ""
|
81 |
print("Sending request to OpenAI API.")
|
82 |
|
83 |
+
# Streaming request to the HF Inference API
|
84 |
for message_chunk in client.chat.completions.create(
|
85 |
+
model=model_to_use,
|
86 |
max_tokens=max_tokens,
|
87 |
+
stream=True,
|
88 |
temperature=temperature,
|
89 |
top_p=top_p,
|
90 |
frequency_penalty=frequency_penalty,
|
|
|
95 |
token_text = message_chunk.choices[0].delta.content
|
96 |
print(f"Received token: {token_text}")
|
97 |
response += token_text
|
98 |
+
# Yield partial response so Gradio can display in real-time
|
99 |
yield response
|
100 |
|
101 |
print("Completed response generation.")
|
102 |
|
103 |
+
#
|
104 |
+
# Building the Gradio interface below
|
105 |
+
#
|
106 |
+
print("Building the Gradio interface with advanced features...")
|
107 |
+
|
108 |
+
# --- Create a list of 'Featured Models' for demonstration. You can customize as you wish. ---
|
109 |
+
models_list = (
|
110 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
111 |
+
"BigScience/bloom",
|
112 |
+
"openai/gpt-4",
|
113 |
+
"google/flan-t5-xxl",
|
114 |
+
"EleutherAI/gpt-j-6B",
|
115 |
+
"YourSpecialModel/awesome-13B",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
)
|
|
|
117 |
|
118 |
+
# This function filters the above models_list by a given search term:
|
119 |
+
def filter_models(search_term):
|
120 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
121 |
+
return gr.update(choices=filtered)
|
122 |
+
|
123 |
+
# We’ll create a Chatbot in a Blocks layout to incorporate an Accordion for "Featured Models"
|
124 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
125 |
+
gr.Markdown("## Serverless-TextGen-Hub\nA comprehensive UI for text generation, including featured models and custom model overrides.")
|
126 |
+
|
127 |
+
# The Chatbot itself
|
128 |
+
chatbot = gr.Chatbot(label="TextGen Chatbot", height=600)
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column(scale=1):
|
132 |
+
# We create interactive UI elements that will feed into the 'respond' function
|
133 |
+
|
134 |
+
# System message
|
135 |
+
system_message = gr.Textbox(label="System message", placeholder="Set the system role instructions here.")
|
136 |
+
|
137 |
+
# Accordion for selecting the model
|
138 |
+
with gr.Accordion("Featured Models", open=True):
|
139 |
+
model_search = gr.Textbox(
|
140 |
+
label="Filter Models",
|
141 |
+
placeholder="Search for a featured model...",
|
142 |
+
lines=1
|
143 |
+
)
|
144 |
+
featured_model = gr.Radio(
|
145 |
+
label="Select a Featured Model Below",
|
146 |
+
choices=models_list,
|
147 |
+
value="meta-llama/Llama-3.3-70B-Instruct", # default
|
148 |
+
interactive=True,
|
149 |
+
)
|
150 |
+
# Link the search box to filter the radio model choices
|
151 |
+
model_search.change(filter_models, inputs=model_search, outputs=featured_model)
|
152 |
+
|
153 |
+
# A text box to optionally override the featured model
|
154 |
+
custom_model = gr.Textbox(
|
155 |
+
label="Custom Model",
|
156 |
+
info="(Optional) Provide a custom HF model path. If non-empty, it overrides your featured model choice."
|
157 |
+
)
|
158 |
+
|
159 |
+
# Sliders
|
160 |
+
max_tokens = gr.Slider(
|
161 |
+
minimum=1,
|
162 |
+
maximum=4096,
|
163 |
+
value=512,
|
164 |
+
step=1,
|
165 |
+
label="Max new tokens"
|
166 |
+
)
|
167 |
+
temperature = gr.Slider(
|
168 |
+
minimum=0.1,
|
169 |
+
maximum=4.0,
|
170 |
+
value=0.7,
|
171 |
+
step=0.1,
|
172 |
+
label="Temperature"
|
173 |
+
)
|
174 |
+
top_p = gr.Slider(
|
175 |
+
minimum=0.1,
|
176 |
+
maximum=1.0,
|
177 |
+
value=0.95,
|
178 |
+
step=0.05,
|
179 |
+
label="Top-P"
|
180 |
+
)
|
181 |
+
frequency_penalty = gr.Slider(
|
182 |
+
minimum=-2.0,
|
183 |
+
maximum=2.0,
|
184 |
+
value=0.0,
|
185 |
+
step=0.1,
|
186 |
+
label="Frequency Penalty"
|
187 |
+
)
|
188 |
+
seed = gr.Slider(
|
189 |
+
minimum=-1,
|
190 |
+
maximum=65535,
|
191 |
+
value=-1,
|
192 |
+
step=1,
|
193 |
+
label="Seed (-1 for random)"
|
194 |
+
)
|
195 |
+
|
196 |
+
# The "chat" Column
|
197 |
+
with gr.Column(scale=2):
|
198 |
+
# We store the conversation history in a state variable
|
199 |
+
state = gr.State([]) # Each element in state is (user_message, assistant_message)
|
200 |
+
|
201 |
+
# Chat input box for the user
|
202 |
+
with gr.Row():
|
203 |
+
txt = gr.Textbox(
|
204 |
+
label="Enter your message",
|
205 |
+
placeholder="Type your request here, then press 'Submit'",
|
206 |
+
lines=3
|
207 |
+
)
|
208 |
+
|
209 |
+
# Button to submit the message
|
210 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
211 |
+
|
212 |
+
#
|
213 |
+
# The 'respond' function is tied to the chatbot display.
|
214 |
+
# We'll define a small wrapper that updates the 'history' (state) each time.
|
215 |
+
#
|
216 |
+
|
217 |
+
def user_submit(user_message, chat_history):
|
218 |
+
"""
|
219 |
+
This function just adds the user message to the history and returns it.
|
220 |
+
The actual text generation will come from 'bot_respond' next.
|
221 |
+
"""
|
222 |
+
# Append new user message to the existing conversation
|
223 |
+
chat_history = chat_history + [(user_message, None)]
|
224 |
+
return "", chat_history
|
225 |
+
|
226 |
+
def bot_respond(chat_history, sys_msg, max_t, temp, top, freq_pen, s, custom_mod, feat_model):
|
227 |
+
"""
|
228 |
+
This function calls our 'respond' generator to get the text.
|
229 |
+
It updates the last message in chat_history with the bot's response as it streams.
|
230 |
+
"""
|
231 |
+
user_message = chat_history[-1][0] if len(chat_history) > 0 else ""
|
232 |
+
# We call the generator
|
233 |
+
bot_messages = respond(
|
234 |
+
user_message,
|
235 |
+
chat_history[:-1], # all but the last user message
|
236 |
+
sys_msg,
|
237 |
+
max_t,
|
238 |
+
temp,
|
239 |
+
top,
|
240 |
+
freq_pen,
|
241 |
+
s,
|
242 |
+
custom_mod,
|
243 |
+
feat_model,
|
244 |
+
)
|
245 |
+
|
246 |
+
# Stream the tokens back
|
247 |
+
final_bot_msg = ""
|
248 |
+
for token_text in bot_messages:
|
249 |
+
final_bot_msg = token_text
|
250 |
+
# We'll update the chatbot in real-time
|
251 |
+
chat_history[-1] = (user_message, final_bot_msg)
|
252 |
+
yield chat_history
|
253 |
+
|
254 |
+
# Tie the Submit button to the user_submit function, and then to bot_respond
|
255 |
+
submit_btn.click(
|
256 |
+
user_submit,
|
257 |
+
inputs=[txt, state],
|
258 |
+
outputs=[txt, state],
|
259 |
+
queue=False
|
260 |
+
).then(
|
261 |
+
bot_respond,
|
262 |
+
inputs=[state, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, custom_model, featured_model],
|
263 |
+
outputs=[chatbot],
|
264 |
+
queue=True
|
265 |
+
)
|
266 |
+
|
267 |
+
print("Interface construction complete. Ready to launch!")
|
268 |
+
|
269 |
+
# Launch the Gradio Blocks interface
|
270 |
if __name__ == "__main__":
|
271 |
print("Launching the demo application.")
|
272 |
demo.launch()
|