Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -22,109 +22,164 @@ def respond(
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
-
|
26 |
custom_model
|
27 |
):
|
28 |
"""
|
29 |
-
This function handles the chatbot response.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
-
selected_model = custom_model if custom_model.strip() != "" else model_selection
|
32 |
-
print(f"Selected model: {selected_model}")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
if seed == -1:
|
35 |
seed = None
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
38 |
for val in history:
|
39 |
-
|
40 |
-
|
41 |
-
if
|
42 |
-
messages.append({"role": "
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
messages.append({"role": "user", "content": message})
|
44 |
|
|
|
45 |
response = ""
|
|
|
|
|
|
|
46 |
for message_chunk in client.chat.completions.create(
|
47 |
-
model=
|
48 |
max_tokens=max_tokens,
|
49 |
-
stream=True,
|
50 |
temperature=temperature,
|
51 |
top_p=top_p,
|
52 |
frequency_penalty=frequency_penalty,
|
53 |
seed=seed,
|
54 |
messages=messages,
|
55 |
):
|
|
|
56 |
token_text = message_chunk.choices[0].delta.content
|
|
|
57 |
response += token_text
|
58 |
yield response
|
59 |
|
|
|
|
|
60 |
# Create a Chatbot component with a specified height
|
61 |
chatbot = gr.Chatbot(height=600)
|
|
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
"meta-llama/Llama-3.3-70B-Instruct",
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"facebook/bart-base",
|
69 |
-
"google/flan-t5-base"
|
70 |
]
|
71 |
|
|
|
|
|
|
|
|
|
|
|
72 |
# Create the Gradio ChatInterface
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
108 |
with gr.Tab("Information"):
|
109 |
with gr.Accordion("Featured Models", open=False):
|
110 |
-
gr.
|
111 |
"""
|
|
|
112 |
<table style="width:100%; text-align:center; margin:auto;">
|
113 |
<tr>
|
114 |
<th>Model Name</th>
|
115 |
-
<th>
|
|
|
116 |
</tr>
|
117 |
<tr>
|
118 |
-
<td>
|
119 |
-
<td>
|
|
|
120 |
</tr>
|
121 |
<tr>
|
122 |
-
<td>
|
123 |
-
<td>
|
|
|
124 |
</tr>
|
125 |
<tr>
|
126 |
-
<td>
|
127 |
-
<td>
|
|
|
128 |
</tr>
|
129 |
</table>
|
130 |
"""
|
@@ -132,43 +187,23 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
132 |
with gr.Accordion("Parameters Overview", open=False):
|
133 |
gr.Markdown(
|
134 |
"""
|
135 |
-
##
|
136 |
-
|
137 |
-
|
138 |
-
## Max New Tokens
|
139 |
-
###### Determines the maximum length of the response.
|
140 |
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
|
149 |
|
150 |
-
|
151 |
-
|
152 |
"""
|
153 |
)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
respond,
|
158 |
-
additional_inputs=[
|
159 |
-
system_message,
|
160 |
-
max_tokens,
|
161 |
-
temperature,
|
162 |
-
top_p,
|
163 |
-
frequency_penalty,
|
164 |
-
seed,
|
165 |
-
model,
|
166 |
-
custom_model
|
167 |
-
],
|
168 |
-
chatbot=chatbot,
|
169 |
-
theme="Nymbo/Nymbo_Theme"
|
170 |
-
)
|
171 |
-
|
172 |
-
if __name__ == "__main__":
|
173 |
-
print("Launching the demo application.")
|
174 |
-
demo.launch()
|
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
+
model,
|
26 |
custom_model
|
27 |
):
|
28 |
"""
|
29 |
+
This function handles the chatbot response. It takes in:
|
30 |
+
- message: the user's new message
|
31 |
+
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
32 |
+
- system_message: the system prompt
|
33 |
+
- max_tokens: the maximum number of tokens to generate in the response
|
34 |
+
- temperature: sampling temperature
|
35 |
+
- top_p: top-p (nucleus) sampling
|
36 |
+
- frequency_penalty: penalize repeated tokens in the output
|
37 |
+
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
38 |
+
- model: the selected model
|
39 |
+
- custom_model: a custom model provided by the user
|
40 |
"""
|
|
|
|
|
41 |
|
42 |
+
print(f"Received message: {message}")
|
43 |
+
print(f"History: {history}")
|
44 |
+
print(f"System message: {system_message}")
|
45 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
46 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
47 |
+
print(f"Model: {model}, Custom Model: {custom_model}")
|
48 |
+
|
49 |
+
# Convert seed to None if -1 (meaning random)
|
50 |
if seed == -1:
|
51 |
seed = None
|
52 |
|
53 |
+
# Use custom model if provided, otherwise use selected model
|
54 |
+
if custom_model.strip() != "":
|
55 |
+
model_to_use = custom_model.strip()
|
56 |
+
else:
|
57 |
+
model_to_use = model
|
58 |
+
|
59 |
+
# Construct the messages array required by the API
|
60 |
messages = [{"role": "system", "content": system_message}]
|
61 |
+
|
62 |
+
# Add conversation history to the context
|
63 |
for val in history:
|
64 |
+
user_part = val[0]
|
65 |
+
assistant_part = val[1]
|
66 |
+
if user_part:
|
67 |
+
messages.append({"role": "user", "content": user_part})
|
68 |
+
print(f"Added user message to context: {user_part}")
|
69 |
+
if assistant_part:
|
70 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
71 |
+
print(f"Added assistant message to context: {assistant_part}")
|
72 |
+
|
73 |
+
# Append the latest user message
|
74 |
messages.append({"role": "user", "content": message})
|
75 |
|
76 |
+
# Start with an empty string to build the response as tokens stream in
|
77 |
response = ""
|
78 |
+
print("Sending request to OpenAI API.")
|
79 |
+
|
80 |
+
# Make the streaming request to the HF Inference API via openai-like client
|
81 |
for message_chunk in client.chat.completions.create(
|
82 |
+
model=model_to_use, # Use the selected or custom model
|
83 |
max_tokens=max_tokens,
|
84 |
+
stream=True, # Stream the response
|
85 |
temperature=temperature,
|
86 |
top_p=top_p,
|
87 |
frequency_penalty=frequency_penalty,
|
88 |
seed=seed,
|
89 |
messages=messages,
|
90 |
):
|
91 |
+
# Extract the token text from the response chunk
|
92 |
token_text = message_chunk.choices[0].delta.content
|
93 |
+
print(f"Received token: {token_text}")
|
94 |
response += token_text
|
95 |
yield response
|
96 |
|
97 |
+
print("Completed response generation.")
|
98 |
+
|
99 |
# Create a Chatbot component with a specified height
|
100 |
chatbot = gr.Chatbot(height=600)
|
101 |
+
print("Chatbot interface created.")
|
102 |
|
103 |
+
# List of placeholder models for demonstration
|
104 |
+
models_list = [
|
105 |
"meta-llama/Llama-3.3-70B-Instruct",
|
106 |
+
"meta-llama/Llama-2-70B-chat",
|
107 |
+
"google/flan-t5-xl"
|
|
|
|
|
108 |
]
|
109 |
|
110 |
+
# Function to filter models based on search input
|
111 |
+
def filter_models(search_term):
|
112 |
+
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
113 |
+
return gr.update(choices=filtered_models)
|
114 |
+
|
115 |
# Create the Gradio ChatInterface
|
116 |
+
# Adding additional fields for model selection and parameters
|
117 |
+
demo = gr.ChatInterface(
|
118 |
+
respond,
|
119 |
+
additional_inputs=[
|
120 |
+
gr.Textbox(value="", label="System message"),
|
121 |
+
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
122 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
123 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
124 |
+
gr.Slider(
|
125 |
+
minimum=-2.0,
|
126 |
+
maximum=2.0,
|
127 |
+
value=0.0,
|
128 |
+
step=0.1,
|
129 |
+
label="Frequency Penalty"
|
130 |
+
),
|
131 |
+
gr.Slider(
|
132 |
+
minimum=-1,
|
133 |
+
maximum=65535, # Arbitrary upper limit for demonstration
|
134 |
+
value=-1,
|
135 |
+
step=1,
|
136 |
+
label="Seed (-1 for random)"
|
137 |
+
),
|
138 |
+
gr.Textbox(label="Custom Model", placeholder="Enter custom model path here"),
|
139 |
+
gr.Accordion("Featured Models", open=True).update(
|
140 |
+
gr.Column([
|
141 |
+
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...").change(
|
142 |
+
filter_models, inputs="__self__", outputs="model"
|
143 |
+
),
|
144 |
+
gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio")
|
145 |
+
])
|
146 |
+
)
|
147 |
+
],
|
148 |
+
fill_height=True,
|
149 |
+
chatbot=chatbot,
|
150 |
+
theme="Nymbo/Nymbo_Theme",
|
151 |
+
)
|
152 |
|
153 |
+
# Adding an "Information" tab with accordions for "Featured Models" and "Parameters Overview"
|
154 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
|
155 |
+
with gr.Tab("Chat"):
|
156 |
+
gr.Markdown("## Chat with the Model")
|
157 |
+
chatbot.render()
|
158 |
with gr.Tab("Information"):
|
159 |
with gr.Accordion("Featured Models", open=False):
|
160 |
+
gr.HTML(
|
161 |
"""
|
162 |
+
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
|
163 |
<table style="width:100%; text-align:center; margin:auto;">
|
164 |
<tr>
|
165 |
<th>Model Name</th>
|
166 |
+
<th>Type</th>
|
167 |
+
<th>Notes</th>
|
168 |
</tr>
|
169 |
<tr>
|
170 |
+
<td>Llama-3.3-70B-Instruct</td>
|
171 |
+
<td>Instruction</td>
|
172 |
+
<td>High performance</td>
|
173 |
</tr>
|
174 |
<tr>
|
175 |
+
<td>Llama-2-70B-chat</td>
|
176 |
+
<td>Chat</td>
|
177 |
+
<td>Conversational</td>
|
178 |
</tr>
|
179 |
<tr>
|
180 |
+
<td>Flan-T5-XL</td>
|
181 |
+
<td>General</td>
|
182 |
+
<td>Versatile</td>
|
183 |
</tr>
|
184 |
</table>
|
185 |
"""
|
|
|
187 |
with gr.Accordion("Parameters Overview", open=False):
|
188 |
gr.Markdown(
|
189 |
"""
|
190 |
+
## Parameters Overview
|
191 |
+
### Max new tokens
|
192 |
+
This slider controls the maximum number of tokens to generate in the response.
|
|
|
|
|
193 |
|
194 |
+
### Temperature
|
195 |
+
Sampling temperature, which controls the randomness. A higher temperature makes the output more random.
|
196 |
|
197 |
+
### Top-P
|
198 |
+
Top-p (nucleus) sampling, which controls the diversity. The model considers the smallest number of tokens whose cumulative probability exceeds the top-p threshold.
|
199 |
|
200 |
+
### Frequency Penalty
|
201 |
+
Penalizes repeated tokens in the output, which helps to reduce repetition.
|
202 |
|
203 |
+
### Seed
|
204 |
+
A fixed seed for reproducibility. Set to -1 for random seed.
|
205 |
"""
|
206 |
)
|
207 |
|
208 |
+
print("Launching the demo application.")
|
209 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|