|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- moe |
|
- TensorBlock |
|
- GGUF |
|
pipeline_tag: text-generation |
|
base_model: TomGrc/FusionNet_34Bx2_MoE |
|
model-index: |
|
- name: FusionNet_34Bx2_MoE |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 72.95 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 86.22 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 77.05 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 71.31 |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 83.98 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 70.89 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"> |
|
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> |
|
</p> |
|
</div> |
|
</div> |
|
|
|
## TomGrc/FusionNet_34Bx2_MoE - GGUF |
|
|
|
This repo contains GGUF format model files for [TomGrc/FusionNet_34Bx2_MoE](https://huggingface.co./TomGrc/FusionNet_34Bx2_MoE). |
|
|
|
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). |
|
|
|
<div style="text-align: left; margin: 20px 0;"> |
|
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> |
|
Run them on the TensorBlock client using your local machine ↗ |
|
</a> |
|
</div> |
|
|
|
## Prompt template |
|
|
|
``` |
|
[INST] <<SYS>> |
|
{system_prompt} |
|
<</SYS>> |
|
|
|
{prompt} [/INST] |
|
``` |
|
|
|
## Model file specification |
|
|
|
| Filename | Quant type | File Size | Description | |
|
| -------- | ---------- | --------- | ----------- | |
|
| [FusionNet_34Bx2_MoE-Q2_K.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q2_K.gguf) | Q2_K | 22.394 GB | smallest, significant quality loss - not recommended for most purposes | |
|
| [FusionNet_34Bx2_MoE-Q3_K_S.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q3_K_S.gguf) | Q3_K_S | 26.318 GB | very small, high quality loss | |
|
| [FusionNet_34Bx2_MoE-Q3_K_M.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q3_K_M.gguf) | Q3_K_M | 29.237 GB | very small, high quality loss | |
|
| [FusionNet_34Bx2_MoE-Q3_K_L.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q3_K_L.gguf) | Q3_K_L | 31.768 GB | small, substantial quality loss | |
|
| [FusionNet_34Bx2_MoE-Q4_0.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q4_0.gguf) | Q4_0 | 34.334 GB | legacy; small, very high quality loss - prefer using Q3_K_M | |
|
| [FusionNet_34Bx2_MoE-Q4_K_S.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q4_K_S.gguf) | Q4_K_S | 34.594 GB | small, greater quality loss | |
|
| [FusionNet_34Bx2_MoE-Q4_K_M.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q4_K_M.gguf) | Q4_K_M | 36.661 GB | medium, balanced quality - recommended | |
|
| [FusionNet_34Bx2_MoE-Q5_0.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q5_0.gguf) | Q5_0 | 41.878 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [FusionNet_34Bx2_MoE-Q5_K_S.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q5_K_S.gguf) | Q5_K_S | 41.878 GB | large, low quality loss - recommended | |
|
| [FusionNet_34Bx2_MoE-Q5_K_M.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q5_K_M.gguf) | Q5_K_M | 43.077 GB | large, very low quality loss - recommended | |
|
| [FusionNet_34Bx2_MoE-Q6_K.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q6_K.gguf) | Q6_K | 49.893 GB | very large, extremely low quality loss | |
|
| [FusionNet_34Bx2_MoE-Q8_0](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q8_0) | Q8_0 | 64.621 GB | very large, extremely low quality loss - not recommended | |
|
|
|
|
|
## Downloading instruction |
|
|
|
### Command line |
|
|
|
Firstly, install Huggingface Client |
|
|
|
```shell |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
|
|
Then, downoad the individual model file the a local directory |
|
|
|
```shell |
|
huggingface-cli download tensorblock/FusionNet_34Bx2_MoE-GGUF --include "FusionNet_34Bx2_MoE-Q2_K.gguf" --local-dir MY_LOCAL_DIR |
|
``` |
|
|
|
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: |
|
|
|
```shell |
|
huggingface-cli download tensorblock/FusionNet_34Bx2_MoE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|