---
language:
- en
license: mit
tags:
- moe
- TensorBlock
- GGUF
pipeline_tag: text-generation
base_model: TomGrc/FusionNet_34Bx2_MoE
model-index:
- name: FusionNet_34Bx2_MoE
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.95
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.22
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.05
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.31
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.98
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.89
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
---
## TomGrc/FusionNet_34Bx2_MoE - GGUF
This repo contains GGUF format model files for [TomGrc/FusionNet_34Bx2_MoE](https://huggingface.co./TomGrc/FusionNet_34Bx2_MoE).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
[INST] <>
{system_prompt}
<>
{prompt} [/INST]
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [FusionNet_34Bx2_MoE-Q2_K.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q2_K.gguf) | Q2_K | 22.394 GB | smallest, significant quality loss - not recommended for most purposes |
| [FusionNet_34Bx2_MoE-Q3_K_S.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q3_K_S.gguf) | Q3_K_S | 26.318 GB | very small, high quality loss |
| [FusionNet_34Bx2_MoE-Q3_K_M.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q3_K_M.gguf) | Q3_K_M | 29.237 GB | very small, high quality loss |
| [FusionNet_34Bx2_MoE-Q3_K_L.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q3_K_L.gguf) | Q3_K_L | 31.768 GB | small, substantial quality loss |
| [FusionNet_34Bx2_MoE-Q4_0.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q4_0.gguf) | Q4_0 | 34.334 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [FusionNet_34Bx2_MoE-Q4_K_S.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q4_K_S.gguf) | Q4_K_S | 34.594 GB | small, greater quality loss |
| [FusionNet_34Bx2_MoE-Q4_K_M.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q4_K_M.gguf) | Q4_K_M | 36.661 GB | medium, balanced quality - recommended |
| [FusionNet_34Bx2_MoE-Q5_0.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q5_0.gguf) | Q5_0 | 41.878 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [FusionNet_34Bx2_MoE-Q5_K_S.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q5_K_S.gguf) | Q5_K_S | 41.878 GB | large, low quality loss - recommended |
| [FusionNet_34Bx2_MoE-Q5_K_M.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q5_K_M.gguf) | Q5_K_M | 43.077 GB | large, very low quality loss - recommended |
| [FusionNet_34Bx2_MoE-Q6_K.gguf](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q6_K.gguf) | Q6_K | 49.893 GB | very large, extremely low quality loss |
| [FusionNet_34Bx2_MoE-Q8_0](https://huggingface.co./tensorblock/FusionNet_34Bx2_MoE-GGUF/blob/main/FusionNet_34Bx2_MoE-Q8_0) | Q8_0 | 64.621 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/FusionNet_34Bx2_MoE-GGUF --include "FusionNet_34Bx2_MoE-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/FusionNet_34Bx2_MoE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```