TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

TomGrc/FusionNet_34Bx2_MoE - GGUF

This repo contains GGUF format model files for TomGrc/FusionNet_34Bx2_MoE.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

[INST] <<SYS>>
{system_prompt}
<</SYS>>

{prompt} [/INST]

Model file specification

Filename Quant type File Size Description
FusionNet_34Bx2_MoE-Q2_K.gguf Q2_K 22.394 GB smallest, significant quality loss - not recommended for most purposes
FusionNet_34Bx2_MoE-Q3_K_S.gguf Q3_K_S 26.318 GB very small, high quality loss
FusionNet_34Bx2_MoE-Q3_K_M.gguf Q3_K_M 29.237 GB very small, high quality loss
FusionNet_34Bx2_MoE-Q3_K_L.gguf Q3_K_L 31.768 GB small, substantial quality loss
FusionNet_34Bx2_MoE-Q4_0.gguf Q4_0 34.334 GB legacy; small, very high quality loss - prefer using Q3_K_M
FusionNet_34Bx2_MoE-Q4_K_S.gguf Q4_K_S 34.594 GB small, greater quality loss
FusionNet_34Bx2_MoE-Q4_K_M.gguf Q4_K_M 36.661 GB medium, balanced quality - recommended
FusionNet_34Bx2_MoE-Q5_0.gguf Q5_0 41.878 GB legacy; medium, balanced quality - prefer using Q4_K_M
FusionNet_34Bx2_MoE-Q5_K_S.gguf Q5_K_S 41.878 GB large, low quality loss - recommended
FusionNet_34Bx2_MoE-Q5_K_M.gguf Q5_K_M 43.077 GB large, very low quality loss - recommended
FusionNet_34Bx2_MoE-Q6_K.gguf Q6_K 49.893 GB very large, extremely low quality loss
FusionNet_34Bx2_MoE-Q8_0 Q8_0 64.621 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/FusionNet_34Bx2_MoE-GGUF --include "FusionNet_34Bx2_MoE-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/FusionNet_34Bx2_MoE-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
234
GGUF
Model size
60.8B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for tensorblock/FusionNet_34Bx2_MoE-GGUF

Quantized
(6)
this model

Evaluation results