distilabel-internal-testing

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

distilabel-internal-testing's activity

davidberenstein1957 
posted an update 9 days ago
davidberenstein1957 
posted an update 14 days ago
burtenshaw 
posted an update 25 days ago
view post
Post
2663
People are flexing their end of year stats, so I made this app to show hub stats in a tidy design!

Thanks @Ameeeee and @jfcalvo for the feature from Argilla!
burtenshaw/recap
  • 1 reply
·
davidberenstein1957 
posted an update 25 days ago
davidberenstein1957 
posted an update 28 days ago
view post
Post
4189
Introducing the Synthetic Data Generator, a user-friendly application that takes a no-code approach to creating custom datasets with Large Language Models (LLMs). The best part: A simple step-by-step process, making dataset creation a non-technical breeze, allowing anyone to create datasets and models in minutes and without any code.

Blog: https://huggingface.co./blog/synthetic-data-generator
Space: argilla/synthetic-data-generator
  • 4 replies
·
burtenshaw 
posted an update about 1 month ago
view post
Post
2426
Quick update from week 1 of smol course. The community is taking the driving seat and using the material for their own projects. If you want to do the same, join in!

- we have ongoing translation projects in Korean, Vietnamese, Portuguese, and Spanish
- 3 chapters are ready for students. On topics like, instruction tuning, preference alignment, and parameter efficient fine tuning
- 3 chapters are in progress on evaluation, vision language models, and synthetic data.
- around 780 people have forked the repo to use it for learning, teaching, sharing.

⏭️ Next step is to support people that want to use the course for teaching, content creation, internal knowledge sharing, or anything. If you're into this. Drop an issue or PR

REPO: https://buff.ly/3ZCMKX2
discord channel: https://buff.ly/4f9F8jA
davidberenstein1957 
posted an update about 1 month ago
view post
Post
2072
Open Preference Dataset for Text-to-Image Generation by the 🤗 Community

Open Image Preferences is an Apache 2.0 licensed dataset for text-to-image generation. This dataset contains 10K text-to-image preference pairs across common image generation categories, while using different model families and varying prompt complexities.

https://huggingface.co./blog/image-preferences
dvilasuero 
posted an update about 1 month ago
view post
Post
2305
🌐 Announcing Global-MMLU: an improved MMLU Open dataset with evaluation coverage across 42 languages, built with Argilla and the Hugging Face community.

Global-MMLU is the result of months of work with the goal of advancing Multilingual LLM evaluation. It's been an amazing open science effort with collaborators from Cohere For AI, Mila - Quebec Artificial Intelligence Institute, EPFL, Massachusetts Institute of Technology, AI Singapore, National University of Singapore, KAIST, Instituto Superior Técnico, Carnegie Mellon University, CONICET, and University of Buenos Aires.

🏷️ +200 contributors used Argilla MMLU questions where regional, dialect, or cultural knowledge was required to answer correctly. 85% of the questions required Western-centric knowledge!

Thanks to this annotation process, the open dataset contains two subsets:

1. 🗽 Culturally Agnostic: no specific regional, cultural knowledge is required.
2. ⚖️ Culturally Sensitive: requires dialect, cultural knowledge or geographic knowledge to answer correctly.

Moreover, we provide high quality translations of 25 out of 42 languages, thanks again to the community and professional annotators leveraging Argilla on the Hub.

I hope this will ensure a better understanding of the limitations and challenges for making open AI useful for many languages.

Dataset: CohereForAI/Global-MMLU
davidberenstein1957 
posted an update about 1 month ago
view post
Post
1187
This is amazing for cheap models fine-tunes without the hassle of actual deployment! TIL: LoRA fine-tunes for models on the Hub can directly be used for inference!


davidberenstein1957 
posted an update about 1 month ago
view post
Post
3440
The Data Is Better Together community is set to release the first Apache 2 licensed image preference dataset!

Great work and let's give this a final push :)

@aashish1904 congrats on your month of HF pro. There is more to win during this sprint!

@aashish1904 @AnyaDesdein @davidberenstein1957 @Malalatiana @beta3 @fffiloni @munish0838 @Reza2kn @bbunzeck @Creazycreator @andrei-saceleanu @jafhaponiuk @rca-etl @kf120 @burtenshaw @mmhamdy @grib0ed0v @Doopus @AnyaDes @ttkap @Xceron @Lewox @davanstrien @Azazelle @adirik @Ashish08 @AntonVic @kenantang @sdiazlor @g-ronimo @dennis-rall @prithivMLmods @girtss3 @flozi00 @WaveCut @Taylor658 @Wildminder @Sara9999 @phaelishall @sararob @dvilasuero @pgabrys @plaguss @CDS899 @timajwilliams @rudzinskimaciej @pavel-ai @aggr8 @ignacioct @MouseAI @Leeps @MaksKul @NicolasDmln @Muinez @kusht55 @caiolang @Jakub-Brand24 @loamy @Demijan @eliab96 @Viewegger @JosephCatrambone @p1atdev @mrshu @o639 @Targezed @Aviv-anthonnyolime @thliang01 @Ahmed-Amine @glards @pranaykoppula @nataliaElv @MaPirlet @alvarobartt @gabrielmbmb @zlicastro @Jaydip @Chouettecheveche @lilcheaty @ruyrdiaz @robintema @fdaudens @ggcristian @a-r-r-o-w @pates @joheras @stopsatgreen @bezo97 @chachi902 @iamyann @liamcripwell @dmb23 @korbih @anonymous7743 @akbdx18 @OVAWARE @severo @akontra @lichorosario @lhoestq @SebastianBodza @Vishnou @ameerazam08 @appoose @Mukei @mearco @joaquincabezas @Fizzarolli @thomastraum @igortopolski @OxxoCodes @patrickfleith @asoria @bn22 @sitammeur @Krodolf @bergr7f @Sbxxn @wietsevenema @sugatoray @Iamladi @MikeTrizna @feveromo @mokady @Bolero @prath @Dowwie @kfahn @decodingchris @alili2050 @RahulRaman @yzimmermann @Ameeeee @ecyht2 @MattMC001 @hemanthkumarak @Thegorgibus @akos2 @LawRun @ramithuh @SuperMuel @sjans @peterizsak @mosama @Eyel @mtr3 @cfahlgren1 @legentil @clem @Citaman @Aurelien-Morgan @AntoineBourgois @TotoB12 @Stanmey @osanseviero @multimodalart @maxiw @ariG23498 @ngk89 @femboysLover @dvs @tacohiddink @blanchon @DavidJimenez
  • 1 reply
·
burtenshaw 
posted an update about 1 month ago
view post
Post
2632
For anyone looking to boost their LLM fine-tuning and alignment skills this decemeber. We're running this free and open course called smol course. It’s not big like Li Yin and @mlabonne , it’s just smol.

👷 It focuses on practical use cases, so if you’re working on something, bring it along.

👯‍♀️ It’s peer reviewed and open so you can discuss and get feedback.

🤘 If you’re already a smol pro, feel free to drop a star or issue.

> > Part 1 starts now, and it’s on instruction tuning!

https://github.com/huggingface/smol-course
burtenshaw 
posted an update about 1 month ago
view post
Post
1590
[SATURDAY ROUNDUP] ☕️🧑‍🎓

In case you missed everything this week. It’s all about vision language models and image preference datasets. Here are the models and datasets you can use in your projects.

QWQ-32B-Preview is the first open weights model to reason like o1 with comparable performance. It’s large but is acing some of the hardest tasks.

https://bsky.app/profile/philschmid.bsky.social/post/3lbylz6nzqk25

SmolVLM is a vision implementation of the recently released SmolLM2. It uses the Idefics3 approach to add a vision encoder. The main difference being the smaller language model (8b > 1.7b) and more compression of images. This results in a model that is very accurate for its memory footprint.

https://huggingface.co./blog/smolvlm

ColSmolVLM is a vision embedding model based on SmolVLM using the Colbert approach from ColPali. This is shown to be great at document retrieval and everyone should test it out in their RAG setups.

https://huggingface.co./posts/merve/663466156074132

In an effort to build a FLUX level open source image generation model, the community is building a dataset of image preferences. The dataset is already open and the project is still running. Join in!

https://huggingface.co./posts/davidberenstein1957/405018978675827

TRL tutorial Drop - This week I dropped a load of tutorials on finetuning and aligning models with TRL. If you’re upskilling in this space, you should check these out.

https://bsky.app/profile/benburtenshaw.bsky.social/post/3lbrc56ap3222
davidberenstein1957 
posted an update about 2 months ago
view post
Post
1580
🔥 Dataset Drop - Open Image Preferences

BlackForest Labs Flux Dev VS. Stability AI Stable Diffusion Large 3.5

Together with the ⁠data-is-better-together community, we've worked on an Apache 2.0 licensed open image preference dataset based on the fal ai imgsys prompts dataset. Thanks to the awesome community, we have managed to get 5K preference pairs in less than 2 days. The annotation alignment among annotators is great too.

Aashish Kumar won a month of Hugging Face Pro by making the most contributions! Congrats from the entire team 🥇

The best thing?! We are not done yet! Let's keep the annotations coming for 5K more in the second part of the sprint! (with more prices to go around).

Dataset: https://huggingface.co./datasets/data-is-better-together/image-preferences-results
davidberenstein1957 
posted an update about 2 months ago
view post
Post
1708
Let’s make a generation of amazing image-generation models

The best image generation models are trained on human preference datasets, where annotators have selected the best image from a choice of two. Unfortunately, many of these datasets are closed source so the community cannot train open models on them. Let’s change that!

The community can contribute image preferences for an open-source dataset that could be used for building AI models that convert text to image, like the flux or stable diffusion families. The dataset will be open source so everyone can use it to train models that we can all use.

Blog: https://huggingface.co./blog/burtenshaw/image-preferences
davidberenstein1957 
posted an update about 2 months ago
davidberenstein1957 
posted an update about 2 months ago
view post
Post
1081
🤗🔭 Introducing Observers: A Lightweight SDK for AI Observability 🔭🤗

Observers is an open-source Python SDK that provides comprehensive observability for AI applications. Our library makes it easy to:

- Track and record interactions with AI models
- Store observations in multiple backends
- Query and analyse your AI interactions with ease

https://huggingface.co./blog/davidberenstein1957/observers-a-lightweight-sdk-for-ai-observability
dvilasuero 
posted an update about 2 months ago
davidberenstein1957 
posted an update about 2 months ago
view post
Post
1979
For anyone who struggles with NER or information extraction with LLM.

We showed an efficient workflow for token classification including zero-shot suggestions and model fine-tuning with Argilla, GliNER, the NuMind NuExtract LLM and SpanMarker. @argilla

Video: https://youtu.be/JvLpaYgNd84?feature=shared
Notebooks and slides included to try it yourself 🙂