Yesterday @mattshumer released mattshumer/Reflection-Llama-3.1-70B, an impressive model that achieved incredible results in benchmarks like MMLU. The model was fine-tuned using Reflection-Tuning and the dataset used wasn't released, but I created a small recipe with distilabel that allows generating a dataset with a similar output format:
In this dataset gabrielmbmb/distilabel-reflection-tuning you can found 5 rows that I generated with this recipe. You can also found the code of the pipeline in the file called reflection.py.
distilabel 1.3.0 is out! This release contains many core improvements and new tasks that help us building argilla/magpie-ultra-v0.1!
Distributed pipeline execution with Ray, new Magpie tasks, reward models, components for dataset diversity based on sentence embeddings, Argilla 2.0 compatibility and many more features!