glecorve's picture
Enriched README
c8f49de
---
dataset_info:
features:
- name: uid
dtype: int32
- name: NNQT_question
dtype: string
- name: paraphrased_question
dtype: string
- name: question
dtype: string
- name: simplified_query
dtype: string
- name: sparql_dbpedia18
dtype: string
- name: sparql_wikidata
dtype: string
- name: answer
list: string
- name: solved_answer
list: string
- name: subgraph
dtype: string
- name: template
dtype: string
- name: template_id
dtype: string
- name: template_index
dtype: int32
splits:
- name: train
num_bytes: 241621115
num_examples: 21101
- name: validation
num_bytes: 11306539
num_examples: 3010
- name: test
num_bytes: 21146458
num_examples: 6024
download_size: 79003648
dataset_size: 274074112
task_categories:
- question-answering
- text-generation
tags:
- qa
- knowledge-graph
- sparql
language:
- en
---
# Dataset Card for LC-QuAD 2.0 - SPARQLtoText version
## Table of Contents
- [Dataset Card for LC-QuAD 2.0 - SPARQLtoText version](#dataset-card-for-lc-quad-20---sparqltotext-version)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [New field `simplified_query`](#new-field-simplified_query)
- [New split "valid"](#new-split-valid)
- [Supported tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Types of questions](#types-of-questions)
- [Data splits](#data-splits)
- [Additional information](#additional-information)
- [Related datasets](#related-datasets)
- [Licencing information](#licencing-information)
- [Citation information](#citation-information)
- [This version of the corpus (with normalized SPARQL queries)](#this-version-of-the-corpus-with-normalized-sparql-queries)
- [Original version](#original-version)
## Dataset Description
- **Paper:** [SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications (AACL-IJCNLP 2022)](https://aclanthology.org/2022.aacl-main.11/)
- **Point of Contact:** GwΓ©nolΓ© LecorvΓ©
### Dataset Summary
Special version of [LC-QuAD 2.0](https://huggingface.co./datasets/lc_quad) for the SPARQL-to-Text task
#### New field `simplified_query`
New field is named "simplified_query". It results from applying the following step on the field "query":
* Replacing URIs with a simpler format with prefix "resource:", "property:" and "ontology:".
* Spacing the delimiters `(`, `{`, `.`, `}`, `)`.
* Adding diversity to some filters which test a number (`contains ( ?var, 'number' )` can become `contains ?var = number`
* Randomizing the variables names
* Shuffling the clauses
#### New split "valid"
A validation set was randonly extracted from the test set to represent 10% of the whole dataset.
### Supported tasks
- Knowledge-based question-answering
- Text-to-SPARQL conversion
- SPARQL-to-Text conversion
### Languages
- English
## Dataset Structure
The corpus follows the global architecture from the original version of CSQA (https://amritasaha1812.github.io/CSQA/).
There is one directory of the train, dev, and test sets, respectively.
Dialogues are stored in separate directories, 100 dialogues per directory.
Finally, each dialogue is stored in a JSON file as a list of turns.
### Types of questions
Comparison of question types compared to related datasets:
| | | [SimpleQuestions](https://huggingface.co./datasets/OrangeInnov/simplequestions-sparqltotext) | [ParaQA](https://huggingface.co./datasets/OrangeInnov/paraqa-sparqltotext) | [LC-QuAD 2.0](https://huggingface.co./datasets/OrangeInnov/lcquad_2.0-sparqltotext) | [CSQA](https://huggingface.co./datasets/OrangeInnov/csqa-sparqltotext) | [WebNLQ-QA](https://huggingface.co./datasets/OrangeInnov/webnlg-qa) |
|--------------------------|-----------------|:---------------:|:------:|:-----------:|:----:|:---------:|
| **Number of triplets in query** | 1 | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | 2 | | βœ“ | βœ“ | βœ“ | βœ“ |
| | More | | | βœ“ | βœ“ | βœ“ |
| **Logical connector between triplets** | Conjunction | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Disjunction | | | | βœ“ | βœ“ |
| | Exclusion | | | | βœ“ | βœ“ |
| **Topology of the query graph** | Direct | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Sibling | | βœ“ | βœ“ | βœ“ | βœ“ |
| | Chain | | βœ“ | βœ“ | βœ“ | βœ“ |
| | Mixed | | | βœ“ | | βœ“ |
| | Other | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Variable typing in the query** | None | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Target variable | | βœ“ | βœ“ | βœ“ | βœ“ |
| | Internal variable | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Comparisons clauses** | None | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | String | | | βœ“ | | βœ“ |
| | Number | | | βœ“ | βœ“ | βœ“ |
| | Date | | | βœ“ | | βœ“ |
| **Superlative clauses** | No | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Yes | | | | βœ“ | |
| **Answer type** | Entity (open) | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Entity (closed) | | | | βœ“ | βœ“ |
| | Number | | | βœ“ | βœ“ | βœ“ |
| | Boolean | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Answer cardinality** | 0 (unanswerable) | | | βœ“ | | βœ“ |
| | 1 | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | More | | βœ“ | βœ“ | βœ“ | βœ“ |
| **Number of target variables** | 0 (β‡’ ASK verb) | | βœ“ | βœ“ | βœ“ | βœ“ |
| | 1 | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | 2 | | | βœ“ | | βœ“ |
| **Dialogue context** | Self-sufficient | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Coreference | | | | βœ“ | βœ“ |
| | Ellipsis | | | | βœ“ | βœ“ |
| **Meaning** | Meaningful | βœ“ | βœ“ | βœ“ | βœ“ | βœ“ |
| | Non-sense | | | | | βœ“ |
### Data splits
Text verbalization is only available for a subset of the test set, referred to as *challenge set*. Other sample only contain dialogues in the form of follow-up sparql queries.
| | Train | Validation | Test |
| --------------------- | ---------- | ---------- | ---------- |
| Questions | 21,000 | 3,000 | 6,000 |
| NL question per query | 1 |
| Characters per query | 108 (Β± 36) |
| Tokens per question | 10.6 (Β± 3.9) |
## Additional information
### Related datasets
This corpus is part of a set of 5 datasets released for SPARQL-to-Text generation, namely:
- Non conversational datasets
- [SimpleQuestions](https://huggingface.co./datasets/OrangeInnov/simplequestions-sparqltotext) (from https://github.com/askplatypus/wikidata-simplequestions)
- [ParaQA](https://huggingface.co./datasets/OrangeInnov/paraqa-sparqltotext) (from https://github.com/barshana-banerjee/ParaQA)
- [LC-QuAD 2.0](https://huggingface.co./datasets/OrangeInnov/lcquad_2.0-sparqltotext) (from http://lc-quad.sda.tech/)
- Conversational datasets
- [CSQA](https://huggingface.co./datasets/OrangeInnov/csqa-sparqltotext) (from https://amritasaha1812.github.io/CSQA/)
- [WebNLQ-QA](https://huggingface.co./datasets/OrangeInnov/webnlg-qa) (derived from https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0)
### Licencing information
* Content from original dataset: CC-BY 3.0
* New content: CC BY-SA 4.0
### Citation information
#### This version of the corpus (with normalized SPARQL queries)
```bibtex
@inproceedings{lecorve2022sparql2text,
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
year={2022}
}
```
#### Original version
```bibtex
@inproceedings{dubey2017lc2,
title={LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia},
author={Dubey, Mohnish and Banerjee, Debayan and Abdelkawi, Abdelrahman and Lehmann, Jens},
booktitle={Proceedings of the 18th International Semantic Web Conference (ISWC)},
year={2019},
organization={Springer}
}
```