glecorve's picture
Enriched README
c8f49de
metadata
dataset_info:
  features:
    - name: uid
      dtype: int32
    - name: NNQT_question
      dtype: string
    - name: paraphrased_question
      dtype: string
    - name: question
      dtype: string
    - name: simplified_query
      dtype: string
    - name: sparql_dbpedia18
      dtype: string
    - name: sparql_wikidata
      dtype: string
    - name: answer
      list: string
    - name: solved_answer
      list: string
    - name: subgraph
      dtype: string
    - name: template
      dtype: string
    - name: template_id
      dtype: string
    - name: template_index
      dtype: int32
  splits:
    - name: train
      num_bytes: 241621115
      num_examples: 21101
    - name: validation
      num_bytes: 11306539
      num_examples: 3010
    - name: test
      num_bytes: 21146458
      num_examples: 6024
  download_size: 79003648
  dataset_size: 274074112
task_categories:
  - question-answering
  - text-generation
tags:
  - qa
  - knowledge-graph
  - sparql
language:
  - en

Dataset Card for LC-QuAD 2.0 - SPARQLtoText version

Table of Contents

Dataset Description

Dataset Summary

Special version of LC-QuAD 2.0 for the SPARQL-to-Text task

New field simplified_query

New field is named "simplified_query". It results from applying the following step on the field "query":

  • Replacing URIs with a simpler format with prefix "resource:", "property:" and "ontology:".

  • Spacing the delimiters (, {, ., }, ).

  • Adding diversity to some filters which test a number (contains ( ?var, 'number' ) can become contains ?var = number

  • Randomizing the variables names

  • Shuffling the clauses

New split "valid"

A validation set was randonly extracted from the test set to represent 10% of the whole dataset.

Supported tasks

  • Knowledge-based question-answering
  • Text-to-SPARQL conversion
  • SPARQL-to-Text conversion

Languages

  • English

Dataset Structure

The corpus follows the global architecture from the original version of CSQA (https://amritasaha1812.github.io/CSQA/).

There is one directory of the train, dev, and test sets, respectively.

Dialogues are stored in separate directories, 100 dialogues per directory.

Finally, each dialogue is stored in a JSON file as a list of turns.

Types of questions

Comparison of question types compared to related datasets:

SimpleQuestions ParaQA LC-QuAD 2.0 CSQA WebNLQ-QA
Number of triplets in query 1 βœ“ βœ“ βœ“ βœ“ βœ“
2 βœ“ βœ“ βœ“ βœ“
More βœ“ βœ“ βœ“
Logical connector between triplets Conjunction βœ“ βœ“ βœ“ βœ“ βœ“
Disjunction βœ“ βœ“
Exclusion βœ“ βœ“
Topology of the query graph Direct βœ“ βœ“ βœ“ βœ“ βœ“
Sibling βœ“ βœ“ βœ“ βœ“
Chain βœ“ βœ“ βœ“ βœ“
Mixed βœ“ βœ“
Other βœ“ βœ“ βœ“ βœ“
Variable typing in the query None βœ“ βœ“ βœ“ βœ“ βœ“
Target variable βœ“ βœ“ βœ“ βœ“
Internal variable βœ“ βœ“ βœ“ βœ“
Comparisons clauses None βœ“ βœ“ βœ“ βœ“ βœ“
String βœ“ βœ“
Number βœ“ βœ“ βœ“
Date βœ“ βœ“
Superlative clauses No βœ“ βœ“ βœ“ βœ“ βœ“
Yes βœ“
Answer type Entity (open) βœ“ βœ“ βœ“ βœ“ βœ“
Entity (closed) βœ“ βœ“
Number βœ“ βœ“ βœ“
Boolean βœ“ βœ“ βœ“ βœ“
Answer cardinality 0 (unanswerable) βœ“ βœ“
1 βœ“ βœ“ βœ“ βœ“ βœ“
More βœ“ βœ“ βœ“ βœ“
Number of target variables 0 (β‡’ ASK verb) βœ“ βœ“ βœ“ βœ“
1 βœ“ βœ“ βœ“ βœ“ βœ“
2 βœ“ βœ“
Dialogue context Self-sufficient βœ“ βœ“ βœ“ βœ“ βœ“
Coreference βœ“ βœ“
Ellipsis βœ“ βœ“
Meaning Meaningful βœ“ βœ“ βœ“ βœ“ βœ“
Non-sense βœ“

Data splits

Text verbalization is only available for a subset of the test set, referred to as challenge set. Other sample only contain dialogues in the form of follow-up sparql queries.

Train Validation Test
Questions 21,000 3,000 6,000
NL question per query 1
Characters per query 108 (Β± 36)
Tokens per question 10.6 (Β± 3.9)

Additional information

Related datasets

This corpus is part of a set of 5 datasets released for SPARQL-to-Text generation, namely:

Licencing information

  • Content from original dataset: CC-BY 3.0
  • New content: CC BY-SA 4.0

Citation information

This version of the corpus (with normalized SPARQL queries)

@inproceedings{lecorve2022sparql2text,
  title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
  author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
  journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
  year={2022}
}

Original version

@inproceedings{dubey2017lc2,
   title={LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia},
   author={Dubey, Mohnish and Banerjee, Debayan and Abdelkawi, Abdelrahman and Lehmann, Jens},
   booktitle={Proceedings of the 18th International Semantic Web Conference (ISWC)},
   year={2019},
   organization={Springer}
}