Datasets:
File size: 10,572 Bytes
22b65de ebf97bc 22b65de c8f49de 22b65de c8f49de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
dataset_info:
features:
- name: uid
dtype: int32
- name: NNQT_question
dtype: string
- name: paraphrased_question
dtype: string
- name: question
dtype: string
- name: simplified_query
dtype: string
- name: sparql_dbpedia18
dtype: string
- name: sparql_wikidata
dtype: string
- name: answer
list: string
- name: solved_answer
list: string
- name: subgraph
dtype: string
- name: template
dtype: string
- name: template_id
dtype: string
- name: template_index
dtype: int32
splits:
- name: train
num_bytes: 241621115
num_examples: 21101
- name: validation
num_bytes: 11306539
num_examples: 3010
- name: test
num_bytes: 21146458
num_examples: 6024
download_size: 79003648
dataset_size: 274074112
task_categories:
- question-answering
- text-generation
tags:
- qa
- knowledge-graph
- sparql
language:
- en
---
# Dataset Card for LC-QuAD 2.0 - SPARQLtoText version
## Table of Contents
- [Dataset Card for LC-QuAD 2.0 - SPARQLtoText version](#dataset-card-for-lc-quad-20---sparqltotext-version)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [New field `simplified_query`](#new-field-simplified_query)
- [New split "valid"](#new-split-valid)
- [Supported tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Types of questions](#types-of-questions)
- [Data splits](#data-splits)
- [Additional information](#additional-information)
- [Related datasets](#related-datasets)
- [Licencing information](#licencing-information)
- [Citation information](#citation-information)
- [This version of the corpus (with normalized SPARQL queries)](#this-version-of-the-corpus-with-normalized-sparql-queries)
- [Original version](#original-version)
## Dataset Description
- **Paper:** [SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications (AACL-IJCNLP 2022)](https://aclanthology.org/2022.aacl-main.11/)
- **Point of Contact:** GwΓ©nolΓ© LecorvΓ©
### Dataset Summary
Special version of [LC-QuAD 2.0](https://huggingface.co./datasets/lc_quad) for the SPARQL-to-Text task
#### New field `simplified_query`
New field is named "simplified_query". It results from applying the following step on the field "query":
* Replacing URIs with a simpler format with prefix "resource:", "property:" and "ontology:".
* Spacing the delimiters `(`, `{`, `.`, `}`, `)`.
* Adding diversity to some filters which test a number (`contains ( ?var, 'number' )` can become `contains ?var = number`
* Randomizing the variables names
* Shuffling the clauses
#### New split "valid"
A validation set was randonly extracted from the test set to represent 10% of the whole dataset.
### Supported tasks
- Knowledge-based question-answering
- Text-to-SPARQL conversion
- SPARQL-to-Text conversion
### Languages
- English
## Dataset Structure
The corpus follows the global architecture from the original version of CSQA (https://amritasaha1812.github.io/CSQA/).
There is one directory of the train, dev, and test sets, respectively.
Dialogues are stored in separate directories, 100 dialogues per directory.
Finally, each dialogue is stored in a JSON file as a list of turns.
### Types of questions
Comparison of question types compared to related datasets:
| | | [SimpleQuestions](https://huggingface.co./datasets/OrangeInnov/simplequestions-sparqltotext) | [ParaQA](https://huggingface.co./datasets/OrangeInnov/paraqa-sparqltotext) | [LC-QuAD 2.0](https://huggingface.co./datasets/OrangeInnov/lcquad_2.0-sparqltotext) | [CSQA](https://huggingface.co./datasets/OrangeInnov/csqa-sparqltotext) | [WebNLQ-QA](https://huggingface.co./datasets/OrangeInnov/webnlg-qa) |
|--------------------------|-----------------|:---------------:|:------:|:-----------:|:----:|:---------:|
| **Number of triplets in query** | 1 | β | β | β | β | β |
| | 2 | | β | β | β | β |
| | More | | | β | β | β |
| **Logical connector between triplets** | Conjunction | β | β | β | β | β |
| | Disjunction | | | | β | β |
| | Exclusion | | | | β | β |
| **Topology of the query graph** | Direct | β | β | β | β | β |
| | Sibling | | β | β | β | β |
| | Chain | | β | β | β | β |
| | Mixed | | | β | | β |
| | Other | | β | β | β | β |
| **Variable typing in the query** | None | β | β | β | β | β |
| | Target variable | | β | β | β | β |
| | Internal variable | | β | β | β | β |
| **Comparisons clauses** | None | β | β | β | β | β |
| | String | | | β | | β |
| | Number | | | β | β | β |
| | Date | | | β | | β |
| **Superlative clauses** | No | β | β | β | β | β |
| | Yes | | | | β | |
| **Answer type** | Entity (open) | β | β | β | β | β |
| | Entity (closed) | | | | β | β |
| | Number | | | β | β | β |
| | Boolean | | β | β | β | β |
| **Answer cardinality** | 0 (unanswerable) | | | β | | β |
| | 1 | β | β | β | β | β |
| | More | | β | β | β | β |
| **Number of target variables** | 0 (β ASK verb) | | β | β | β | β |
| | 1 | β | β | β | β | β |
| | 2 | | | β | | β |
| **Dialogue context** | Self-sufficient | β | β | β | β | β |
| | Coreference | | | | β | β |
| | Ellipsis | | | | β | β |
| **Meaning** | Meaningful | β | β | β | β | β |
| | Non-sense | | | | | β |
### Data splits
Text verbalization is only available for a subset of the test set, referred to as *challenge set*. Other sample only contain dialogues in the form of follow-up sparql queries.
| | Train | Validation | Test |
| --------------------- | ---------- | ---------- | ---------- |
| Questions | 21,000 | 3,000 | 6,000 |
| NL question per query | 1 |
| Characters per query | 108 (Β± 36) |
| Tokens per question | 10.6 (Β± 3.9) |
## Additional information
### Related datasets
This corpus is part of a set of 5 datasets released for SPARQL-to-Text generation, namely:
- Non conversational datasets
- [SimpleQuestions](https://huggingface.co./datasets/OrangeInnov/simplequestions-sparqltotext) (from https://github.com/askplatypus/wikidata-simplequestions)
- [ParaQA](https://huggingface.co./datasets/OrangeInnov/paraqa-sparqltotext) (from https://github.com/barshana-banerjee/ParaQA)
- [LC-QuAD 2.0](https://huggingface.co./datasets/OrangeInnov/lcquad_2.0-sparqltotext) (from http://lc-quad.sda.tech/)
- Conversational datasets
- [CSQA](https://huggingface.co./datasets/OrangeInnov/csqa-sparqltotext) (from https://amritasaha1812.github.io/CSQA/)
- [WebNLQ-QA](https://huggingface.co./datasets/OrangeInnov/webnlg-qa) (derived from https://gitlab.com/shimorina/webnlg-dataset/-/tree/master/release_v3.0)
### Licencing information
* Content from original dataset: CC-BY 3.0
* New content: CC BY-SA 4.0
### Citation information
#### This version of the corpus (with normalized SPARQL queries)
```bibtex
@inproceedings{lecorve2022sparql2text,
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
year={2022}
}
```
#### Original version
```bibtex
@inproceedings{dubey2017lc2,
title={LC-QuAD 2.0: A Large Dataset for Complex Question Answering over Wikidata and DBpedia},
author={Dubey, Mohnish and Banerjee, Debayan and Abdelkawi, Abdelrahman and Lehmann, Jens},
booktitle={Proceedings of the 18th International Semantic Web Conference (ISWC)},
year={2019},
organization={Springer}
}
```
|