whisper-large-v2-pt / README.md
zuazo's picture
Model save
04bd51a verified
|
raw
history blame
3.01 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: pt
          split: test
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 5.875201261788191

openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4680
  • Wer: 5.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0874 3.53 1000 0.1593 4.9765
0.0318 7.05 2000 0.2263 5.4365
0.0121 10.58 3000 0.2966 5.5630
0.005 14.11 4000 0.3400 5.6123
0.0036 17.64 5000 0.3554 5.6600
0.0034 21.16 6000 0.3640 5.6370
0.0021 24.69 7000 0.3714 5.6485
0.0016 28.22 8000 0.3962 5.6255
0.0013 31.75 9000 0.3960 5.6731
0.0009 35.27 10000 0.4107 5.7027
0.0008 38.8 11000 0.3981 5.9869
0.0006 42.33 12000 0.4097 5.7010
0.0005 45.86 13000 0.4226 5.8144
0.0004 49.38 14000 0.4330 5.8259
0.0004 52.91 15000 0.4415 5.7914
0.0003 56.44 16000 0.4490 5.7848
0.0003 59.96 17000 0.4553 5.8013
0.0002 63.49 18000 0.4625 5.7963
0.0002 67.02 19000 0.4663 5.8522
0.0002 70.55 20000 0.4680 5.8752

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.15.1