File size: 3,005 Bytes
04bd51a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: openai/whisper-large-v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_13_0
      type: common_voice_13_0
      config: pt
      split: test
      args: pt
    metrics:
    - name: Wer
      type: wer
      value: 5.875201261788191
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-large-v2

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4680
- Wer: 5.8752

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0874        | 3.53  | 1000  | 0.1593          | 4.9765 |
| 0.0318        | 7.05  | 2000  | 0.2263          | 5.4365 |
| 0.0121        | 10.58 | 3000  | 0.2966          | 5.5630 |
| 0.005         | 14.11 | 4000  | 0.3400          | 5.6123 |
| 0.0036        | 17.64 | 5000  | 0.3554          | 5.6600 |
| 0.0034        | 21.16 | 6000  | 0.3640          | 5.6370 |
| 0.0021        | 24.69 | 7000  | 0.3714          | 5.6485 |
| 0.0016        | 28.22 | 8000  | 0.3962          | 5.6255 |
| 0.0013        | 31.75 | 9000  | 0.3960          | 5.6731 |
| 0.0009        | 35.27 | 10000 | 0.4107          | 5.7027 |
| 0.0008        | 38.8  | 11000 | 0.3981          | 5.9869 |
| 0.0006        | 42.33 | 12000 | 0.4097          | 5.7010 |
| 0.0005        | 45.86 | 13000 | 0.4226          | 5.8144 |
| 0.0004        | 49.38 | 14000 | 0.4330          | 5.8259 |
| 0.0004        | 52.91 | 15000 | 0.4415          | 5.7914 |
| 0.0003        | 56.44 | 16000 | 0.4490          | 5.7848 |
| 0.0003        | 59.96 | 17000 | 0.4553          | 5.8013 |
| 0.0002        | 63.49 | 18000 | 0.4625          | 5.7963 |
| 0.0002        | 67.02 | 19000 | 0.4663          | 5.8522 |
| 0.0002        | 70.55 | 20000 | 0.4680          | 5.8752 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.15.1