File size: 2,663 Bytes
032ff24 08d114a 032ff24 8edd020 032ff24 c7a242e 032ff24 14dc1bc 08d114a 8edd020 73fe085 032ff24 08d114a 14dc1bc 032ff24 af80700 032ff24 7faaab8 032ff24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
import torch
import cv2
import os
os.system("wget https://huggingface.co./akhaliq/lama/resolve/main/best.ckpt")
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
import imageio
os.mkdir("data")
os.rename("best.ckpt", "models/best.ckpt")
os.mkdir("dataout")
# Load CLIPSeg model
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
clipseg_model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
# Load LAMA model
model = hub.Module(name='U2Net')
def process_image(image, prompt):
# Generate mask with CLIPSeg
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
with torch.no_grad():
outputs = clipseg_model(**inputs)
preds = outputs.logits
plt.imsave("mask.png", torch.sigmoid(preds))
mask_image = Image.open("mask.png").convert("RGB")
# Convert image to BGR format
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
imageio.imwrite("./data/data.png", image)
# Convert mask to grayscale format
mask_image = cv2.cvtColor(np.array(mask_image), cv2.COLOR_RGB2GRAY)
# Perform inpainting with LAMA
# input_dict = {"image": image, "mask": mask_image}
# imageio.imwrite("./data/data_mask.png", input_dict["mask"])
imageio.imwrite("./data/data_mask.png", mask_image)
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
inpainted_image = "./dataout/data_mask.png"
# inpainted_image = Image.new('RGB', (image.shape[1], image.shape[0]), (0, 0, 0))
# inpainted_image = cv2.cvtColor(inpainted_image, cv2.COLOR_BGR2RGB)
# inpainted_image = Image.fromarray(inpainted_image)
return mask_image, inpainted_image
interface = gr.Interface(fn=process_image,
inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")],
outputs=[gr.Image(type="pil"), gr.Image(type="filepath")],
title="Interactive demo: zero-shot image segmentation with CLIPSeg and inpainting with LAMA",
description="Demo for using CLIPSeg and LAMA to perform zero- and one-shot image segmentation and inpainting. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds.")
interface.launch(debug=True)
|