antoyo123 commited on
Commit
08d114a
·
1 Parent(s): b0df2a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -15,7 +15,7 @@ from PIL import Image, ImageOps
15
  import numpy as np
16
  import imageio
17
  os.mkdir("data")
18
- # os.rename("best.ckpt", "models/best.ckpt")
19
  os.mkdir("dataout")
20
 
21
  # Load CLIPSeg model
@@ -42,10 +42,12 @@ def process_image(image, prompt):
42
  # Perform inpainting with LAMA
43
  # input_dict = {"image": image, "mask": mask_image}
44
  # imageio.imwrite("./data/data_mask.png", input_dict["mask"])
45
- # os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
 
46
  # # inpainted_image = lama_model.inference(data=input_dict)["data"][0]
 
47
 
48
- inpainted_image = Image.new('RGB', (image.shape[1], image.shape[0]), (0, 0, 0))
49
  # inpainted_image = cv2.cvtColor(inpainted_image, cv2.COLOR_BGR2RGB)
50
  # inpainted_image = Image.fromarray(inpainted_image)
51
 
@@ -53,7 +55,7 @@ def process_image(image, prompt):
53
 
54
  interface = gr.Interface(fn=process_image,
55
  inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")],
56
- outputs=[gr.Image(type="pil"), gr.Image(type="pil")],
57
  title="Interactive demo: zero-shot image segmentation with CLIPSeg and inpainting with LAMA",
58
  description="Demo for using CLIPSeg and LAMA to perform zero- and one-shot image segmentation and inpainting. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds.")
59
 
 
15
  import numpy as np
16
  import imageio
17
  os.mkdir("data")
18
+ os.rename("best.ckpt", "models/best.ckpt")
19
  os.mkdir("dataout")
20
 
21
  # Load CLIPSeg model
 
42
  # Perform inpainting with LAMA
43
  # input_dict = {"image": image, "mask": mask_image}
44
  # imageio.imwrite("./data/data_mask.png", input_dict["mask"])
45
+ imageio.imwrite("./data/data_mask.png", mask_image)
46
+ os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
47
  # # inpainted_image = lama_model.inference(data=input_dict)["data"][0]
48
+ inpainted_image = "./data/data_mask.png"
49
 
50
+ # inpainted_image = Image.new('RGB', (image.shape[1], image.shape[0]), (0, 0, 0))
51
  # inpainted_image = cv2.cvtColor(inpainted_image, cv2.COLOR_BGR2RGB)
52
  # inpainted_image = Image.fromarray(inpainted_image)
53
 
 
55
 
56
  interface = gr.Interface(fn=process_image,
57
  inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")],
58
+ outputs=[gr.Image(type="pil"), gr.Image(type="file",label="output")],
59
  title="Interactive demo: zero-shot image segmentation with CLIPSeg and inpainting with LAMA",
60
  description="Demo for using CLIPSeg and LAMA to perform zero- and one-shot image segmentation and inpainting. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds.")
61