Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
|
9 |
+
import os
|
10 |
+
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
|
11 |
+
import paddlehub as hub
|
12 |
+
import gradio as gr
|
13 |
+
import torch
|
14 |
+
from PIL import Image, ImageOps
|
15 |
+
import numpy as np
|
16 |
+
import imageio
|
17 |
+
os.mkdir("data")
|
18 |
+
os.rename("best.ckpt", "models/best.ckpt")
|
19 |
+
os.mkdir("dataout")
|
20 |
+
|
21 |
+
# Load CLIPSeg model
|
22 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
23 |
+
clipseg_model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
24 |
+
|
25 |
+
# Load LAMA model
|
26 |
+
lama_model = hub.Module(name='U2Net')
|
27 |
+
|
28 |
+
def process_image(image, prompt):
|
29 |
+
# Generate mask with CLIPSeg
|
30 |
+
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = clipseg_model(**inputs)
|
33 |
+
preds = outputs.logits
|
34 |
+
plt.imsave("mask.png", torch.sigmoid(preds))
|
35 |
+
mask_image = Image.open("mask.png").convert("RGB")
|
36 |
+
|
37 |
+
# Convert image to BGR format
|
38 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
39 |
+
# Convert mask to grayscale format
|
40 |
+
mask_image = cv2.cvtColor(np.array(mask_image), cv2.COLOR_RGB2GRAY)
|
41 |
+
|
42 |
+
# Perform inpainting with LAMA
|
43 |
+
input_dict = {"image": image, "mask": mask_image}
|
44 |
+
inpainted_image = lama_model.inference(data=input_dict)["data"][0]
|
45 |
+
|
46 |
+
inpainted_image = cv2.cvtColor(inpainted_image, cv2.COLOR_BGR2RGB)
|
47 |
+
inpainted_image = Image.fromarray(inpainted_image)
|
48 |
+
|
49 |
+
return mask_image, inpainted_image
|
50 |
+
|
51 |
+
interface = gr.Interface(fn=process_image,
|
52 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")],
|
53 |
+
outputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
54 |
+
title="Interactive demo: zero-shot image segmentation with CLIPSeg and inpainting with LAMA",
|
55 |
+
description="Demo for using CLIPSeg and LAMA to perform zero- and one-shot image segmentation and inpainting. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds.",
|
56 |
+
examples=[["example_image.png", "wood"]])
|
57 |
+
|
58 |
+
interface.launch(debug=True)
|