Spaces:
Running
Running
import gradio as gr | |
import os | |
from openai import OpenAI | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
featured_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
- custom_model: a user-provided custom model name (if any) | |
- featured_model: the user-selected model from the radio | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Custom model: {custom_model}") | |
print(f"Featured model: {featured_model}") | |
# Convert seed to None if -1 (meaning "random") | |
if seed == -1: | |
seed = None | |
# Construct the conversation array required by the HF Inference API | |
messages = [{"role": "system", "content": system_message or ""}] | |
# Add conversation history | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# The latest user message | |
messages.append({"role": "user", "content": message}) | |
# If custom_model is not empty, it overrides the featured model | |
model_to_use = custom_model.strip() if custom_model.strip() != "" else featured_model.strip() | |
# If somehow both are empty, default to an example model | |
if model_to_use == "": | |
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" | |
print(f"Model selected for inference: {model_to_use}") | |
# Build the response from the streaming tokens | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Streaming request to the HF Inference API | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
# Yield partial response so Gradio can display in real-time | |
yield response | |
print("Completed response generation.") | |
# | |
# Building the Gradio interface below | |
# | |
print("Building the Gradio interface with advanced features...") | |
# --- Create a list of 'Featured Models' for demonstration. You can customize as you wish. --- | |
models_list = ( | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"BigScience/bloom", | |
"openai/gpt-4", | |
"google/flan-t5-xxl", | |
"EleutherAI/gpt-j-6B", | |
"YourSpecialModel/awesome-13B", | |
) | |
# This function filters the above models_list by a given search term: | |
def filter_models(search_term): | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered) | |
# We’ll create a Chatbot in a Blocks layout to incorporate an Accordion for "Featured Models" | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.Markdown("## Serverless-TextGen-Hub\nA comprehensive UI for text generation, including featured models and custom model overrides.") | |
# The Chatbot itself | |
chatbot = gr.Chatbot(label="TextGen Chatbot", height=600) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# We create interactive UI elements that will feed into the 'respond' function | |
# System message | |
system_message = gr.Textbox(label="System message", placeholder="Set the system role instructions here.") | |
# Accordion for selecting the model | |
with gr.Accordion("Featured Models", open=True): | |
model_search = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1 | |
) | |
featured_model = gr.Radio( | |
label="Select a Featured Model Below", | |
choices=models_list, | |
value="meta-llama/Llama-3.3-70B-Instruct", # default | |
interactive=True, | |
) | |
# Link the search box to filter the radio model choices | |
model_search.change(filter_models, inputs=model_search, outputs=featured_model) | |
# A text box to optionally override the featured model | |
custom_model = gr.Textbox( | |
label="Custom Model", | |
info="(Optional) Provide a custom HF model path. If non-empty, it overrides your featured model choice." | |
) | |
# Sliders | |
max_tokens = gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P" | |
) | |
frequency_penalty = gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty" | |
) | |
seed = gr.Slider( | |
minimum=-1, | |
maximum=65535, | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)" | |
) | |
# The "chat" Column | |
with gr.Column(scale=2): | |
# We store the conversation history in a state variable | |
state = gr.State([]) # Each element in state is (user_message, assistant_message) | |
# Chat input box for the user | |
with gr.Row(): | |
txt = gr.Textbox( | |
label="Enter your message", | |
placeholder="Type your request here, then press 'Submit'", | |
lines=3 | |
) | |
# Button to submit the message | |
submit_btn = gr.Button("Submit", variant="primary") | |
# | |
# The 'respond' function is tied to the chatbot display. | |
# We'll define a small wrapper that updates the 'history' (state) each time. | |
# | |
def user_submit(user_message, chat_history): | |
""" | |
This function just adds the user message to the history and returns it. | |
The actual text generation will come from 'bot_respond' next. | |
""" | |
# Append new user message to the existing conversation | |
chat_history = chat_history + [(user_message, None)] | |
return "", chat_history | |
def bot_respond(chat_history, sys_msg, max_t, temp, top, freq_pen, s, custom_mod, feat_model): | |
""" | |
This function calls our 'respond' generator to get the text. | |
It updates the last message in chat_history with the bot's response as it streams. | |
""" | |
user_message = chat_history[-1][0] if len(chat_history) > 0 else "" | |
# We call the generator | |
bot_messages = respond( | |
user_message, | |
chat_history[:-1], # all but the last user message | |
sys_msg, | |
max_t, | |
temp, | |
top, | |
freq_pen, | |
s, | |
custom_mod, | |
feat_model, | |
) | |
# Stream the tokens back | |
final_bot_msg = "" | |
for token_text in bot_messages: | |
final_bot_msg = token_text | |
# We'll update the chatbot in real-time | |
chat_history[-1] = (user_message, final_bot_msg) | |
yield chat_history | |
# Tie the Submit button to the user_submit function, and then to bot_respond | |
submit_btn.click( | |
user_submit, | |
inputs=[txt, state], | |
outputs=[txt, state], | |
queue=False | |
).then( | |
bot_respond, | |
inputs=[state, system_message, max_tokens, temperature, top_p, frequency_penalty, seed, custom_model, featured_model], | |
outputs=[chatbot], | |
queue=True | |
) | |
print("Interface construction complete. Ready to launch!") | |
# Launch the Gradio Blocks interface | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |