ryusangwon's picture
Model save
2918e5d verified
metadata
base_model: fnlp/bart-base-chinese
tags:
  - generated_from_trainer
datasets:
  - xlsum
metrics:
  - rouge
model-index:
  - name: bart-base-chinese-6615-chinese
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xlsum
          type: xlsum
          config: chinese_traditional
          split: validation
          args: chinese_traditional
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.0774

bart-base-chinese-6615-chinese

This model is a fine-tuned version of fnlp/bart-base-chinese on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8576
  • Rouge1: 0.0774
  • Rouge2: 0.0179
  • Rougel: 0.0772
  • Rougelsum: 0.077
  • Gen Len: 19.9552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.1216 0.86 500 0.9150 0.0523 0.0113 0.0521 0.052 19.9345
1.0346 1.71 1000 0.8817 0.0585 0.0119 0.0583 0.0582 19.9535
1.0063 2.57 1500 0.8624 0.0603 0.0112 0.0598 0.0599 19.9512
0.9219 3.42 2000 0.8592 0.0715 0.0145 0.071 0.0712 19.9535
0.8757 4.28 2500 0.8577 0.072 0.0153 0.0717 0.0717 19.9636
0.8832 5.14 3000 0.8567 0.0721 0.0157 0.0717 0.0718 19.9493
0.8788 5.99 3500 0.8498 0.0763 0.0173 0.0759 0.0759 19.9565
0.8659 6.85 4000 0.8513 0.076 0.017 0.0756 0.0754 19.9546
0.7802 7.71 4500 0.8563 0.0772 0.0185 0.077 0.0768 19.9525
0.8114 8.56 5000 0.8562 0.0769 0.0169 0.0766 0.0764 19.954
0.7715 9.42 5500 0.8576 0.0774 0.0179 0.0772 0.077 19.9552

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0