--- base_model: fnlp/bart-base-chinese tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: bart-base-chinese-6615-chinese results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum config: chinese_traditional split: validation args: chinese_traditional metrics: - name: Rouge1 type: rouge value: 0.0774 --- # bart-base-chinese-6615-chinese This model is a fine-tuned version of [fnlp/bart-base-chinese](https://huggingface.co./fnlp/bart-base-chinese) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 0.8576 - Rouge1: 0.0774 - Rouge2: 0.0179 - Rougel: 0.0772 - Rougelsum: 0.077 - Gen Len: 19.9552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.1216 | 0.86 | 500 | 0.9150 | 0.0523 | 0.0113 | 0.0521 | 0.052 | 19.9345 | | 1.0346 | 1.71 | 1000 | 0.8817 | 0.0585 | 0.0119 | 0.0583 | 0.0582 | 19.9535 | | 1.0063 | 2.57 | 1500 | 0.8624 | 0.0603 | 0.0112 | 0.0598 | 0.0599 | 19.9512 | | 0.9219 | 3.42 | 2000 | 0.8592 | 0.0715 | 0.0145 | 0.071 | 0.0712 | 19.9535 | | 0.8757 | 4.28 | 2500 | 0.8577 | 0.072 | 0.0153 | 0.0717 | 0.0717 | 19.9636 | | 0.8832 | 5.14 | 3000 | 0.8567 | 0.0721 | 0.0157 | 0.0717 | 0.0718 | 19.9493 | | 0.8788 | 5.99 | 3500 | 0.8498 | 0.0763 | 0.0173 | 0.0759 | 0.0759 | 19.9565 | | 0.8659 | 6.85 | 4000 | 0.8513 | 0.076 | 0.017 | 0.0756 | 0.0754 | 19.9546 | | 0.7802 | 7.71 | 4500 | 0.8563 | 0.0772 | 0.0185 | 0.077 | 0.0768 | 19.9525 | | 0.8114 | 8.56 | 5000 | 0.8562 | 0.0769 | 0.0169 | 0.0766 | 0.0764 | 19.954 | | 0.7715 | 9.42 | 5500 | 0.8576 | 0.0774 | 0.0179 | 0.0772 | 0.077 | 19.9552 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0