We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger 💪
Together with the models, we are releasing:
📊CodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots
🏆 IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi
The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch 💪
What’s new compared to existing reasoning datasets?
♾ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.
🐳 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.
📀 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.
⏳ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that can’t be verified with a rules-based parser)
📊 We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!
🧪 Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.
🧠 Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.
🔥 Step 3: show we can go from base model -> SFT -> RL via multi-stage training.
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!
* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting. * Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases) * Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1 * Use the resulting data for SFT & RL * Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.
Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥
How? By combining step-wise reward models with tree search algorithms :)
We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"
We're open sourcing the full recipe and sharing a detailed blog post.
In our blog post we cover:
📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.
🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.
🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM
Explore the Latest Top Papers with Papers Leaderboard! We are excited to introduce a new way to explore the most impactful research papers: Papers Leaderboard! This feature allows you to easily find the most talked-about papers across a variety of fields. Hf-demo : ameerazam08/Paper-LeaderBoard Happy weekends!
Yesterday, Mistral released their latest base model (via magnet link of course 😅) and the community quickly converted it to transformers format and pushed it to the Hub: mistral-community/Mixtral-8x22B-v0.1
Early evals of this model looked extremely strong, so we teamed up with Argilla and KAIST AI to cook up a Zephyr recipe with a few new alignment techniques that came out recently:
🧑🍳 Align the base model with Odds Ratio Preference Optimisation (ORPO). This novel algorithm developed by @JW17 and @nlee-208 and @j6mes and does not require an SFT step to achieve high performance and is thus much more computationally efficient than methods like DPO and PPO.
🦫 Use a brand new dataset of 7k high-quality, multi-turn preferences that has been developed by our friends at Argilla. To create this dataset, they took the excellent Capybara SFT dataset from @LDJnrLDJnr/Capybara and converted it into a preference dataset by augmenting the final turn with responses from new LLMs that were then ranked by GPT-4.
What we find especially neat about this approach is that training on 7k samples only takes ~1.3h on 4 H100 nodes, yet produces a model that is very strong on chat benchmarks like IFEval and BBH.
Misc models: 🦖T-Rex2, a very powerful object detection model for many applications https://github.com/IDEA-Research/T-Rex 👀 CT-RATE : A 3D dataset paired with text reports ibrahimhamamci/CT-RATE 🐙Octopus v2: a Gemma-based model trained for Android API - extremely fast, better than Llama+RAG, great results NexaAIDev/Octopus-v2
🌏Models and datasets around the world - Tess-70B, a MiQu-70B fine-tune with high-quality data migtissera/Tess-70B-v1.6 - UNI, a model trained on 100 million pathology images from 100k+ slides MahmoodLab/UNI - CONCH, a VLM trained on 1.17 million pathology image-text pairs MahmoodLab/CONCH