BigLAM: BigScience Libraries, Archives and Museums

non-profit

AI & ML interests

🤗 Hugging Face x 🌸 BigScience initiative to create open source community resources for LAMs.

Recent Activity

biglam's activity

albertvillanova 
posted an update 2 days ago
view post
Post
3130
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒

Here's why this matters & what you need to know! 🧵👇

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents 🛡️
We now inspect every return value during execution:
✅ Allowed: Safe built-in types (e.g., numbers, strings, lists)
⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits 💡
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution 🔐
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! 🚀
Check out the latest smolagents release and start building safer AI agents today.

🔗 https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! 👇

#AI #smolagents #Python #Security
  • 2 replies
·
albertvillanova 
posted an update 3 days ago
view post
Post
3592
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
stefan-it 
posted an update 6 days ago
view post
Post
771
🇹🇷 😍 I'm very happy to finally announce my new Turkish LM called "BERT5urk":

stefan-it/bert5urk

It is a 1.42B T5-based model, trained with UL2 pretraining objective on the Turkish part of the awesome HuggingFaceFW/fineweb-2 dataset.

Feel free to check it out!
  • 1 reply
·
davanstrien 
posted an update 9 days ago
view post
Post
2603
📊 Introducing "Hugging Face Dataset Spotlight" 📊

I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the Hugging Face Hub!

This first episode explores mathematical reasoning datasets:

- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains
- open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models.
- facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.

Plus a bonus segment on bespokelabs/bespoke-manim!

https://www.youtube.com/watch?v=-TgmRq45tW4
stefan-it 
posted an update 10 days ago
view post
Post
3101
After running some 3DMark and FurMark benchmarks on Windows to make sure that my new 5090 is not causing melting cables [1] and some nice shots with a thermal camera (I don't think that's too much), running some fine-tuning experiments with my favorite Flair & Transformers libraries are very easy to perform.

Important steps:

Good idea is to start with a fresh Ubuntu 24.04 installation with latest CUDA 12.8 and the open NVIDIA driver - follow more advices from [2]:

sudo apt -y install cuda-toolkit-12-8 nvidia-open

I tried update from an existing Ubuntu installation with an older CUDA and driver version and it resulted in a non-startable system.

If you are using PyTorch 2.6 with built CUDA 12.6 it will result in:

NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90.

But no worries! For PyTorch you need just to use a nightly 2.7 version that was built with CUDA 12.8. This can easily done via:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu128

After that the latest Flair version can be installed and fine-tuning will work!

References:

[1]: https://www.reddit.com/r/nvidia/comments/1inpox7/rtx_50_series_12vhpwr_megathread/
[2]: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=24.04&target_type=deb_network
  • 1 reply
·
davanstrien 
posted an update 10 days ago
view post
Post
3575
Quick POC: Turn a Hugging Face dataset card into a short podcast introducing the dataset using all open models.

I think I'm the only weirdo who would enjoy listening to something like this though 😅

Here is an example for eth-nlped/stepverify
  • 2 replies
·
stefan-it 
posted an update 13 days ago
view post
Post
5061
She arrived 😍

[Expect more models soon...]
  • 2 replies
·
davanstrien 
posted an update 17 days ago
view post
Post
2571
Hacked together a way to log trl GRPO training completions to a 🤗 dataset repo. This allows you to:

- Track rewards from multiple reward functions
- Treat the completion and rewards from training as a "proper" dataset and do EDA
- Share results for open science

The implementation is super hacky, but I'm curious if people would find this useful.

To push completions to the Hub, you just need two extra parameters:

log_completions=True
log_completions_hub_repo='your-username/repo-name'

Example dataset: davanstrien/test-logs
Colab: https://colab.research.google.com/drive/1wzBFPVthRYYTp-mEYlznLg_e_0Za1M3g

alielfilali01 
posted an update 18 days ago
view post
Post
772
🚨 Arabic LLM Evaluation 🚨

Few models join the ranking of inceptionai/AraGen-Leaderboard Today.

The new MistralAI model, Saba, is quite impressive, Top10 ! Well done @arthurmensch and team.

Sadly Mistral did not follow its strategy about public weights this time, we hope this changes soon and we get the model with a permissive license.

We added other Mistral models and apparently, we have been sleeping on mistralai/Mistral-Large-Instruct-2411 !

Another impressive model that joined the ranking today is ALLaM-AI/ALLaM-7B-Instruct-preview. After a long wait finally ALLaM is here and it is IMPRESSIVE given its size !

ALLaM is ranked on OALL/Open-Arabic-LLM-Leaderboard as well.
davanstrien 
posted an update 21 days ago
davanstrien 
posted an update 23 days ago
view post
Post
1897
How do you make 1M+ Hugging Face models & datasets more discoverable?

davanstrien/Smol-Hub-tldr!

I fine-tuned HuggingFaceTB/SmolLM2-360M to generate one-line summaries from a model or dataset README.

Its own self-description?
"A model for generating concise summaries of model & dataset cards from the Hugging Face Hub"

The goal? Make it easier to find the right models and datasets for your specific needs. It's already powering a semantic search for datasets Space.

It's still a WIP but thanks to @loubnabnl , @anton-l , @eliebak et al, for cooking such a nice base model for fine-tuning small, efficient models for specific domains and tasks. 🙏
davanstrien 
posted an update 24 days ago
albertvillanova 
posted an update about 1 month ago
davanstrien 
posted an update about 1 month ago
davanstrien 
posted an update about 1 month ago
davanstrien 
posted an update about 1 month ago
view post
Post
2039
🌍 Big step for multilingual AI data!

The Hugging Face community has rated educational content in languages spoken by 1.6 billion people! New additions:
• Japanese
• Italian
• Old High German

Learn more and contribute: https://huggingface.co./blog/davanstrien/fineweb2-community

These ratings can help enhance training data for major world languages.
  • 1 reply
·