HuggingFaceEval

non-profit
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

HuggingFaceEvalInternal's activity

thomwolf 
posted an update about 15 hours ago
view post
Post
722
We've kept pushing our Open-R1 project, an open initiative to replicate and extend the techniques behind DeepSeek-R1.

And even we were mind-blown by the results we got with this latest model we're releasing: ⚡️OlympicCoder ( open-r1/OlympicCoder-7B and open-r1/OlympicCoder-32B)

It's beating Claude 3.7 on (competitive) programming –a domain Anthropic has been historically really strong at– and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!

And the best part is that we're open-sourcing all about its training dataset, the new IOI benchmark, and more in our Open-R1 progress report #3: https://huggingface.co./blog/open-r1/update-3

Datasets are are releasing:
- open-r1/codeforces
- open-r1/codeforces-cots
- open-r1/ioi
- open-r1/ioi-test-cases
- open-r1/ioi-sample-solutions
- open-r1/ioi-cots
- open-r1/ioi-2024-model-solutions
clefourrier 
posted an update about 21 hours ago
view post
Post
706
Gemma3 family is out! Reading the tech report, and this section was really interesting to me from a methods/scientific fairness pov.

Instead of doing over-hyped comparisons, they clearly state that **results are reported in a setup which is advantageous to their models**.
(Which everybody does, but people usually don't say)

For a tech report, it makes a lot of sense to report model performance when used optimally!
On leaderboards on the other hand, comparison will be apples to apples, but in a potentially unoptimal way for a given model family (like some user interact sub-optimally with models)

Also contains a cool section (6) on training data memorization rate too! Important to see if your model will output the training data it has seen as such: always an issue for privacy/copyright/... but also very much for evaluation!

Because if your model knows its evals by heart, you're not testing for generalization.
albertvillanova 
posted an update 6 days ago
view post
Post
3494
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒

Here's why this matters & what you need to know! 🧵👇

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents 🛡️
We now inspect every return value during execution:
✅ Allowed: Safe built-in types (e.g., numbers, strings, lists)
⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits 💡
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution 🔐
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! 🚀
Check out the latest smolagents release and start building safer AI agents today.

🔗 https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! 👇

#AI #smolagents #Python #Security
  • 2 replies
·
albertvillanova 
posted an update 7 days ago
view post
Post
3754
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
albertvillanova 
posted an update about 1 month ago
albertvillanova 
posted an update 2 months ago
thomwolf 
posted an update 3 months ago
view post
Post
6078
We are proud to announce HuggingFaceFW/fineweb-2: A sparkling update to HuggingFaceFW/fineweb with 1000s of 🗣️languages.

We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.

🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.

The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.

We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!

In the mean time come ask us question on our chat place: HuggingFaceFW/discussion

H/t @guipenedo @hynky @lvwerra as well as @vsabolcec Bettina Messmer @negar-foroutan and @mjaggi
  • 2 replies
·
thomwolf 
posted an update 3 months ago
thomwolf 
posted an update 3 months ago
thomwolf 
posted an update 4 months ago
SaylorTwift 
posted an update 4 months ago
albertvillanova 
posted an update 4 months ago
view post
Post
1810
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research!
👉 open-llm-leaderboard/comparator
Now, you can not only compare models by performance, but also by their environmental footprint!

🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️
Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
thomwolf 
posted an update 4 months ago
albertvillanova 
posted an update 4 months ago
view post
Post
1604
🚀 New feature of the Comparator of the 🤗 Open LLM Leaderboard: now compare models with their base versions & derivatives (finetunes, adapters, etc.). Perfect for tracking how adjustments affect performance & seeing innovations in action. Dive deeper into the leaderboard!

🛠️ Here's how to use it:
1. Select your model from the leaderboard.
2. Load its model tree.
3. Choose any base & derived models (adapters, finetunes, merges, quantizations) for comparison.
4. Press Load.
See side-by-side performance metrics instantly!

Ready to dive in? 🏆 Try the 🤗 Open LLM Leaderboard Comparator now! See how models stack up against their base versions and derivatives to understand fine-tuning and other adjustments. Easier model analysis for better insights! Check it out here: open-llm-leaderboard/comparator 🌐