rwkv7-1b5-64k / modeling_rwkv7.py
m8than's picture
Upload folder using huggingface_hub
ef217c5 verified
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.attn import Attention
from fla.layers.rwkv7 import RWKV7Attention
from fla.models.rwkv7.configuration_rwkv7 import RWKV7Config
from fla.models.utils import Cache
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
LayerNorm)
from fla.modules.activations import ACT2FN
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
logger = logging.get_logger(__name__)
class RWKV7FeedForward(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'sqrelu',
layer_idx: int = None
) -> RWKV7FeedForward:
super().__init__()
self.hidden_size = hidden_size
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio)
intermediate_size = 32 * ((intermediate_size + 32 - 1) // 32)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.x_k = nn.Parameter(torch.zeros(hidden_size))
self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
self.layer_idx = layer_idx
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
state: Optional[Cache] = None
) -> torch.Tensor:
if attention_mask is not None:
x = x.mul(attention_mask[:, -x.shape[-2]:, None])
if x.shape[1] == 1 and state is not None:
shifted = state[self.layer_idx]['ffn_state'].unsqueeze(1)
else:
shifted = self.time_shift(x)
if state is not None and state[self.layer_idx]['ffn_state'] is not None:
shifted[:, 0] = state[self.layer_idx]['ffn_state'][-1]
if state is not None:
# no need to update the offset twice
state.update(ffn_state=x[:, -1], layer_idx=self.layer_idx, offset=0)
return self.value(self.act_fn(self.key(x + (shifted - x) * self.x_k))), state
class RWKV7Block(nn.Module):
def __init__(
self,
config: RWKV7Config,
layer_idx: int
) -> RWKV7Block:
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.layer_idx = layer_idx
if config.norm_first and layer_idx == 0:
self.pre_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
self.attn_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
if config.attn is not None and layer_idx in config.attn['layers']:
self.attn = Attention(
hidden_size=config.hidden_size,
num_heads=config.attn['num_heads'],
num_kv_heads=config.attn['num_kv_heads'],
window_size=config.attn['window_size'],
rope_theta=config.attn['rope_theta'],
max_position_embeddings=config.max_position_embeddings,
layer_idx=layer_idx
)
else:
self.attn = RWKV7Attention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
head_dim=config.head_dim,
num_heads=config.num_heads,
decay_low_rank_dim=config.decay_low_rank_dim,
gate_low_rank_dim=config.gate_low_rank_dim,
a_low_rank_dim=config.a_low_rank_dim,
v_low_rank_dim=config.v_low_rank_dim,
norm_eps=config.norm_eps,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.ffn_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
self.ffn = RWKV7FeedForward(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
layer_idx=layer_idx
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
v_first: torch.Tensor = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = self.pre_norm(hidden_states) if hasattr(self, 'pre_norm') else hidden_states
hidden_states = self.attn_norm(residual)
hidden_states, attentions, past_key_values, v_first = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
v_first=v_first,
**kwargs
)
hidden_states, residual = self.ffn_norm(hidden_states, residual, True)
hidden_states, past_key_values = self.ffn(hidden_states, attention_mask, past_key_values)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values, v_first)
return outputs
class RWKV7PreTrainedModel(PreTrainedModel):
config_class = RWKV7Config
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_no_split_modules = ['RWKV7Block']
_supports_cache_class = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Parameter):
nn.init.normal_(module, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif hasattr(module, 'reset_parameters'):
module.reset_parameters()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class RWKV7Model(RWKV7PreTrainedModel):
def __init__(self, config: RWKV7Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([RWKV7Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = LayerNorm(config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs: Unpack[Dict]
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`RWKV7Model` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache and not isinstance(past_key_values, Cache):
past_key_values = Cache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
v_first = torch.zeros_like(hidden_states)
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values, v_first = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
v_first,
**kwargs
)
else:
hidden_states, attentions, past_key_values, v_first = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
v_first=v_first,
**kwargs
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attns
)
class RWKV7ForCausalLM(RWKV7PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RWKV7Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co./docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: bool = True,
num_logits_to_keep: Optional[int] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
if num_logits_to_keep is not None:
model_inputs['num_logits_to_keep'] = num_logits_to_keep
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': use_cache,
'attention_mask': attention_mask,
'num_logits_to_keep': num_logits_to_keep,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_logits_to_keep: Optional[int] = 0,
**kwargs: Unpack[Dict]
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs
)
hidden_states = outputs[0]
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
loss, logits = None, None
if not fuse_linear_and_cross_entropy or labels is None:
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:])
if labels is not None:
if self.config.fuse_cross_entropy:
if fuse_linear_and_cross_entropy:
loss_fct = FusedLinearCrossEntropyLoss()
else:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(hidden_states.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
if fuse_linear_and_cross_entropy:
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
labels.view(-1),
self.lm_head.weight,
self.lm_head.bias)
else:
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)