Upload folder using huggingface_hub
Browse files- __init__.py +13 -0
- config.json +31 -0
- configuration_rwkv7.py +83 -0
- model.safetensors +3 -0
- modeling_rwkv7.py +465 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +214 -0
__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.rwkv7.configuration_rwkv7 import RWKV7Config
|
6 |
+
from fla.models.rwkv7.modeling_rwkv7 import RWKV7ForCausalLM, RWKV7Model
|
7 |
+
|
8 |
+
AutoConfig.register(RWKV7Config.model_type, RWKV7Config)
|
9 |
+
AutoModel.register(RWKV7Config, RWKV7Model)
|
10 |
+
AutoModelForCausalLM.register(RWKV7Config, RWKV7ForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['RWKV7Config', 'RWKV7ForCausalLM', 'RWKV7Model']
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"a_low_rank_dim": 96,
|
4 |
+
"attn": null,
|
5 |
+
"attn_mode": "chunk",
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"decay_low_rank_dim": 96,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"fuse_cross_entropy": true,
|
10 |
+
"fuse_norm": true,
|
11 |
+
"gate_low_rank_dim": 256,
|
12 |
+
"head_dim": 64,
|
13 |
+
"hidden_act": "sqrelu",
|
14 |
+
"hidden_ratio": 4.0,
|
15 |
+
"hidden_size": 2048,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 8192,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"model_type": "rwkv7",
|
20 |
+
"norm_bias": true,
|
21 |
+
"norm_eps": 1e-05,
|
22 |
+
"norm_first": true,
|
23 |
+
"num_heads": null,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.48.1",
|
28 |
+
"use_cache": true,
|
29 |
+
"v_low_rank_dim": 64,
|
30 |
+
"vocab_size": 65536
|
31 |
+
}
|
configuration_rwkv7.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class RWKV7Config(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'rwkv7'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
attn_mode: str = "chunk",
|
16 |
+
hidden_size: int = 2048,
|
17 |
+
hidden_ratio: Optional[int] = 4,
|
18 |
+
intermediate_size: Optional[int] = None,
|
19 |
+
num_hidden_layers: int = 24,
|
20 |
+
head_dim: Optional[int] = 64,
|
21 |
+
num_heads: Optional[int] = None,
|
22 |
+
decay_low_rank_dim: int = 64,
|
23 |
+
gate_low_rank_dim: int = 128,
|
24 |
+
a_low_rank_dim: int = 64,
|
25 |
+
v_low_rank_dim: int = 16,
|
26 |
+
hidden_act: str = "sqrelu",
|
27 |
+
max_position_embeddings: int = 2048,
|
28 |
+
norm_first: bool = True,
|
29 |
+
norm_bias: bool = True,
|
30 |
+
norm_eps: float = 1e-5,
|
31 |
+
attn: Optional[Dict] = None,
|
32 |
+
use_cache: bool = True,
|
33 |
+
pad_token_id: int = None,
|
34 |
+
bos_token_id: int = 1,
|
35 |
+
eos_token_id: int = 2,
|
36 |
+
tie_word_embeddings: bool = False,
|
37 |
+
initializer_range: float = 0.02,
|
38 |
+
fuse_norm: bool = True,
|
39 |
+
fuse_cross_entropy: bool = True,
|
40 |
+
vocab_size: int = 32000,
|
41 |
+
**kwargs
|
42 |
+
):
|
43 |
+
self.attn_mode = attn_mode
|
44 |
+
self.hidden_size = hidden_size
|
45 |
+
self.hidden_ratio = hidden_ratio
|
46 |
+
self.intermediate_size = intermediate_size
|
47 |
+
self.norm_first = norm_first
|
48 |
+
self.num_hidden_layers = num_hidden_layers
|
49 |
+
self.head_dim = head_dim
|
50 |
+
self.num_heads = num_heads
|
51 |
+
self.decay_low_rank_dim = decay_low_rank_dim
|
52 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
53 |
+
self.a_low_rank_dim = a_low_rank_dim
|
54 |
+
self.v_low_rank_dim = v_low_rank_dim
|
55 |
+
self.hidden_act = hidden_act
|
56 |
+
self.max_position_embeddings = max_position_embeddings
|
57 |
+
self.norm_bias = norm_bias
|
58 |
+
self.norm_eps = norm_eps
|
59 |
+
self.attn = attn
|
60 |
+
self.use_cache = use_cache
|
61 |
+
self.initializer_range = initializer_range
|
62 |
+
self.fuse_norm = fuse_norm
|
63 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
64 |
+
self.vocab_size = vocab_size
|
65 |
+
|
66 |
+
if attn is not None:
|
67 |
+
if not isinstance(attn, Dict):
|
68 |
+
raise ValueError("attn must be a dictionary")
|
69 |
+
if 'layers' not in attn:
|
70 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
71 |
+
if 'num_heads' not in attn:
|
72 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
73 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
74 |
+
attn['window_size'] = attn.get('window_size', None)
|
75 |
+
attn['rope_theta'] = attn.get('rope_theta', 10000.)
|
76 |
+
|
77 |
+
super().__init__(
|
78 |
+
pad_token_id=pad_token_id,
|
79 |
+
bos_token_id=bos_token_id,
|
80 |
+
eos_token_id=eos_token_id,
|
81 |
+
tie_word_embeddings=tie_word_embeddings,
|
82 |
+
**kwargs,
|
83 |
+
)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bf1fb5bf5cb90e0b401164cb5230eb28b66c517ce11ab8d510faa73aeefc63f
|
3 |
+
size 6109691400
|
modeling_rwkv7.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.generation import GenerationMixin
|
13 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
14 |
+
CausalLMOutputWithPast)
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
from transformers.utils import logging
|
17 |
+
|
18 |
+
from fla.layers.attn import Attention
|
19 |
+
from fla.layers.rwkv7 import RWKV7Attention
|
20 |
+
from fla.models.rwkv7.configuration_rwkv7 import RWKV7Config
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
|
23 |
+
LayerNorm)
|
24 |
+
from fla.modules.activations import ACT2FN
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers.processing_utils import Unpack
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class RWKV7FeedForward(nn.Module):
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
hidden_size: int,
|
37 |
+
hidden_ratio: Optional[int] = None,
|
38 |
+
intermediate_size: Optional[int] = None,
|
39 |
+
hidden_act: str = 'sqrelu',
|
40 |
+
layer_idx: int = None
|
41 |
+
) -> RWKV7FeedForward:
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.hidden_size = hidden_size
|
45 |
+
if hidden_ratio is None:
|
46 |
+
hidden_ratio = 4
|
47 |
+
if intermediate_size is None:
|
48 |
+
intermediate_size = int(hidden_size * hidden_ratio)
|
49 |
+
intermediate_size = 32 * ((intermediate_size + 32 - 1) // 32)
|
50 |
+
self.hidden_ratio = hidden_ratio
|
51 |
+
self.intermediate_size = intermediate_size
|
52 |
+
|
53 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
54 |
+
|
55 |
+
self.x_k = nn.Parameter(torch.zeros(hidden_size))
|
56 |
+
|
57 |
+
self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
|
58 |
+
self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
|
59 |
+
self.act_fn = ACT2FN[hidden_act]
|
60 |
+
|
61 |
+
self.layer_idx = layer_idx
|
62 |
+
|
63 |
+
def forward(
|
64 |
+
self,
|
65 |
+
x: torch.Tensor,
|
66 |
+
attention_mask: Optional[torch.Tensor] = None,
|
67 |
+
state: Optional[Cache] = None
|
68 |
+
) -> torch.Tensor:
|
69 |
+
if attention_mask is not None:
|
70 |
+
x = x.mul(attention_mask[:, -x.shape[-2]:, None])
|
71 |
+
if x.shape[1] == 1 and state is not None:
|
72 |
+
shifted = state[self.layer_idx]['ffn_state'].unsqueeze(1)
|
73 |
+
else:
|
74 |
+
shifted = self.time_shift(x)
|
75 |
+
if state is not None and state[self.layer_idx]['ffn_state'] is not None:
|
76 |
+
shifted[:, 0] = state[self.layer_idx]['ffn_state'][-1]
|
77 |
+
if state is not None:
|
78 |
+
# no need to update the offset twice
|
79 |
+
state.update(ffn_state=x[:, -1], layer_idx=self.layer_idx, offset=0)
|
80 |
+
return self.value(self.act_fn(self.key(x + (shifted - x) * self.x_k))), state
|
81 |
+
|
82 |
+
|
83 |
+
class RWKV7Block(nn.Module):
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
config: RWKV7Config,
|
88 |
+
layer_idx: int
|
89 |
+
) -> RWKV7Block:
|
90 |
+
super().__init__()
|
91 |
+
self.hidden_size = config.hidden_size
|
92 |
+
|
93 |
+
self.config = config
|
94 |
+
self.layer_idx = layer_idx
|
95 |
+
|
96 |
+
if config.norm_first and layer_idx == 0:
|
97 |
+
self.pre_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
|
98 |
+
self.attn_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
|
99 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
100 |
+
self.attn = Attention(
|
101 |
+
hidden_size=config.hidden_size,
|
102 |
+
num_heads=config.attn['num_heads'],
|
103 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
104 |
+
window_size=config.attn['window_size'],
|
105 |
+
rope_theta=config.attn['rope_theta'],
|
106 |
+
max_position_embeddings=config.max_position_embeddings,
|
107 |
+
layer_idx=layer_idx
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
self.attn = RWKV7Attention(
|
111 |
+
mode=config.attn_mode,
|
112 |
+
hidden_size=config.hidden_size,
|
113 |
+
head_dim=config.head_dim,
|
114 |
+
num_heads=config.num_heads,
|
115 |
+
decay_low_rank_dim=config.decay_low_rank_dim,
|
116 |
+
gate_low_rank_dim=config.gate_low_rank_dim,
|
117 |
+
a_low_rank_dim=config.a_low_rank_dim,
|
118 |
+
v_low_rank_dim=config.v_low_rank_dim,
|
119 |
+
norm_eps=config.norm_eps,
|
120 |
+
fuse_norm=config.fuse_norm,
|
121 |
+
layer_idx=layer_idx
|
122 |
+
)
|
123 |
+
self.ffn_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
|
124 |
+
self.ffn = RWKV7FeedForward(
|
125 |
+
hidden_size=config.hidden_size,
|
126 |
+
hidden_ratio=config.hidden_ratio,
|
127 |
+
intermediate_size=config.intermediate_size,
|
128 |
+
hidden_act=config.hidden_act,
|
129 |
+
layer_idx=layer_idx
|
130 |
+
)
|
131 |
+
|
132 |
+
def forward(
|
133 |
+
self,
|
134 |
+
hidden_states: torch.Tensor,
|
135 |
+
attention_mask: Optional[torch.Tensor] = None,
|
136 |
+
past_key_values: Optional[Cache] = None,
|
137 |
+
use_cache: Optional[bool] = False,
|
138 |
+
output_attentions: Optional[bool] = False,
|
139 |
+
v_first: torch.Tensor = None,
|
140 |
+
**kwargs,
|
141 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
142 |
+
residual = self.pre_norm(hidden_states) if hasattr(self, 'pre_norm') else hidden_states
|
143 |
+
hidden_states = self.attn_norm(residual)
|
144 |
+
hidden_states, attentions, past_key_values, v_first = self.attn(
|
145 |
+
hidden_states=hidden_states,
|
146 |
+
attention_mask=attention_mask,
|
147 |
+
past_key_values=past_key_values,
|
148 |
+
use_cache=use_cache,
|
149 |
+
output_attentions=output_attentions,
|
150 |
+
v_first=v_first,
|
151 |
+
**kwargs
|
152 |
+
)
|
153 |
+
hidden_states, residual = self.ffn_norm(hidden_states, residual, True)
|
154 |
+
hidden_states, past_key_values = self.ffn(hidden_states, attention_mask, past_key_values)
|
155 |
+
hidden_states = residual + hidden_states
|
156 |
+
|
157 |
+
outputs = (hidden_states, attentions, past_key_values, v_first)
|
158 |
+
|
159 |
+
return outputs
|
160 |
+
|
161 |
+
|
162 |
+
class RWKV7PreTrainedModel(PreTrainedModel):
|
163 |
+
|
164 |
+
config_class = RWKV7Config
|
165 |
+
base_model_prefix = 'model'
|
166 |
+
supports_gradient_checkpointing = True
|
167 |
+
_no_split_modules = ['RWKV7Block']
|
168 |
+
_supports_cache_class = True
|
169 |
+
|
170 |
+
def __init__(self, *inputs, **kwargs):
|
171 |
+
super().__init__(*inputs, **kwargs)
|
172 |
+
|
173 |
+
def _init_weights(
|
174 |
+
self,
|
175 |
+
module: nn.Module,
|
176 |
+
rescale_prenorm_residual: bool = True,
|
177 |
+
num_residuals_per_layer: int = 2,
|
178 |
+
):
|
179 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
180 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
181 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
182 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
183 |
+
if module.bias is not None:
|
184 |
+
nn.init.zeros_(module.bias)
|
185 |
+
elif isinstance(module, nn.Parameter):
|
186 |
+
nn.init.normal_(module, mean=0.0, std=self.config.initializer_range)
|
187 |
+
elif isinstance(module, nn.Embedding):
|
188 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
189 |
+
if module.padding_idx is not None:
|
190 |
+
module.weight.data[module.padding_idx].zero_()
|
191 |
+
elif hasattr(module, 'reset_parameters'):
|
192 |
+
module.reset_parameters()
|
193 |
+
|
194 |
+
if rescale_prenorm_residual:
|
195 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
196 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
197 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
198 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
199 |
+
#
|
200 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
201 |
+
for name, p in module.named_parameters():
|
202 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
203 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
204 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
205 |
+
# We need to reinit p since this code could be called multiple times
|
206 |
+
# Having just p *= scale would repeatedly scale it down
|
207 |
+
with torch.no_grad():
|
208 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
209 |
+
|
210 |
+
|
211 |
+
class RWKV7Model(RWKV7PreTrainedModel):
|
212 |
+
|
213 |
+
def __init__(self, config: RWKV7Config):
|
214 |
+
super().__init__(config)
|
215 |
+
self.padding_idx = config.pad_token_id
|
216 |
+
self.vocab_size = config.vocab_size
|
217 |
+
|
218 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
219 |
+
self.layers = nn.ModuleList([RWKV7Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
220 |
+
self.norm = LayerNorm(config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
|
221 |
+
|
222 |
+
self.gradient_checkpointing = False
|
223 |
+
|
224 |
+
self.post_init()
|
225 |
+
|
226 |
+
def get_input_embeddings(self):
|
227 |
+
return self.embeddings
|
228 |
+
|
229 |
+
def set_input_embeddings(self, value):
|
230 |
+
self.embeddings = value
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
input_ids: Optional[torch.LongTensor] = None,
|
235 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
236 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
237 |
+
past_key_values: Optional[Cache] = None,
|
238 |
+
use_cache: Optional[bool] = None,
|
239 |
+
output_attentions: Optional[bool] = None,
|
240 |
+
output_hidden_states: Optional[bool] = None,
|
241 |
+
return_dict: Optional[bool] = None,
|
242 |
+
**kwargs: Unpack[Dict]
|
243 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
244 |
+
if output_attentions:
|
245 |
+
warnings.warn("`RWKV7Model` does not `output_attentions` now, setting it to `False`.")
|
246 |
+
output_attentions = False
|
247 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
248 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
249 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
250 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
251 |
+
|
252 |
+
# retrieve input_ids and inputs_embeds
|
253 |
+
if input_ids is not None and inputs_embeds is not None:
|
254 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
255 |
+
if input_ids is None and inputs_embeds is None:
|
256 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
257 |
+
|
258 |
+
if inputs_embeds is None:
|
259 |
+
inputs_embeds = self.embeddings(input_ids)
|
260 |
+
hidden_states = inputs_embeds
|
261 |
+
|
262 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
263 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
264 |
+
|
265 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
266 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
267 |
+
use_cache = False
|
268 |
+
|
269 |
+
all_hidden_states = () if output_hidden_states else None
|
270 |
+
all_attns = () if output_attentions else None
|
271 |
+
|
272 |
+
v_first = torch.zeros_like(hidden_states)
|
273 |
+
for layer in self.layers:
|
274 |
+
if output_hidden_states:
|
275 |
+
all_hidden_states += (hidden_states,)
|
276 |
+
|
277 |
+
if self.gradient_checkpointing and self.training:
|
278 |
+
hidden_states, attentions, past_key_values, v_first = self._gradient_checkpointing_func(
|
279 |
+
layer.__call__,
|
280 |
+
hidden_states,
|
281 |
+
attention_mask,
|
282 |
+
past_key_values,
|
283 |
+
use_cache,
|
284 |
+
output_attentions,
|
285 |
+
v_first,
|
286 |
+
**kwargs
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
hidden_states, attentions, past_key_values, v_first = layer(
|
290 |
+
hidden_states,
|
291 |
+
attention_mask=attention_mask,
|
292 |
+
past_key_values=past_key_values,
|
293 |
+
use_cache=use_cache,
|
294 |
+
output_attentions=output_attentions,
|
295 |
+
v_first=v_first,
|
296 |
+
**kwargs
|
297 |
+
)
|
298 |
+
|
299 |
+
if output_attentions:
|
300 |
+
all_attns += (attentions,)
|
301 |
+
|
302 |
+
hidden_states = self.norm(hidden_states)
|
303 |
+
|
304 |
+
# add hidden states from the last decoder layer
|
305 |
+
if output_hidden_states:
|
306 |
+
all_hidden_states += (hidden_states,)
|
307 |
+
|
308 |
+
if not return_dict:
|
309 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
310 |
+
return BaseModelOutputWithPast(
|
311 |
+
last_hidden_state=hidden_states,
|
312 |
+
past_key_values=past_key_values,
|
313 |
+
hidden_states=all_hidden_states,
|
314 |
+
attentions=all_attns
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
class RWKV7ForCausalLM(RWKV7PreTrainedModel, GenerationMixin):
|
319 |
+
|
320 |
+
_tied_weights_keys = ["lm_head.weight"]
|
321 |
+
|
322 |
+
def __init__(self, config):
|
323 |
+
super().__init__(config)
|
324 |
+
self.model = RWKV7Model(config)
|
325 |
+
self.vocab_size = config.vocab_size
|
326 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
327 |
+
|
328 |
+
# Initialize weights and apply final processing
|
329 |
+
self.post_init()
|
330 |
+
|
331 |
+
def get_input_embeddings(self):
|
332 |
+
return self.model.embeddings
|
333 |
+
|
334 |
+
def set_input_embeddings(self, value):
|
335 |
+
self.model.embeddings = value
|
336 |
+
|
337 |
+
def get_output_embeddings(self):
|
338 |
+
return self.lm_head
|
339 |
+
|
340 |
+
def set_output_embeddings(self, new_embeddings):
|
341 |
+
self.lm_head = new_embeddings
|
342 |
+
|
343 |
+
def set_decoder(self, decoder):
|
344 |
+
self.model = decoder
|
345 |
+
|
346 |
+
def get_decoder(self):
|
347 |
+
return self.model
|
348 |
+
|
349 |
+
def generate(self, *args, **kwargs):
|
350 |
+
try:
|
351 |
+
return super().generate(*args, **kwargs)
|
352 |
+
except AttributeError as exception:
|
353 |
+
if 'past_key_values' in str(exception):
|
354 |
+
raise AttributeError(
|
355 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
356 |
+
f"which is not supported for {self.__class__.__name__}. "
|
357 |
+
f"Try another generation strategy instead. "
|
358 |
+
f"For the available generation strategies, check this doc: "
|
359 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
raise exception
|
363 |
+
|
364 |
+
def prepare_inputs_for_generation(
|
365 |
+
self,
|
366 |
+
input_ids: torch.LongTensor = None,
|
367 |
+
past_key_values: Optional[Cache] = None,
|
368 |
+
attention_mask: Optional[torch.Tensor] = None,
|
369 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
370 |
+
use_cache: bool = True,
|
371 |
+
num_logits_to_keep: Optional[int] = None,
|
372 |
+
**kwargs
|
373 |
+
):
|
374 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
375 |
+
if past_key_values is not None:
|
376 |
+
input_ids = input_ids[:, -1:]
|
377 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
378 |
+
if inputs_embeds is not None and past_key_values is None:
|
379 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
380 |
+
else:
|
381 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
382 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
383 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
384 |
+
# TODO: use `next_tokens` directly instead.
|
385 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
386 |
+
|
387 |
+
if num_logits_to_keep is not None:
|
388 |
+
model_inputs['num_logits_to_keep'] = num_logits_to_keep
|
389 |
+
|
390 |
+
model_inputs.update({
|
391 |
+
'past_key_values': past_key_values,
|
392 |
+
'use_cache': use_cache,
|
393 |
+
'attention_mask': attention_mask,
|
394 |
+
'num_logits_to_keep': num_logits_to_keep,
|
395 |
+
})
|
396 |
+
return model_inputs
|
397 |
+
|
398 |
+
def forward(
|
399 |
+
self,
|
400 |
+
input_ids: torch.LongTensor = None,
|
401 |
+
attention_mask: Optional[torch.Tensor] = None,
|
402 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
403 |
+
past_key_values: Optional[Cache] = None,
|
404 |
+
labels: Optional[torch.LongTensor] = None,
|
405 |
+
use_cache: Optional[bool] = None,
|
406 |
+
output_attentions: Optional[bool] = None,
|
407 |
+
output_hidden_states: Optional[bool] = None,
|
408 |
+
return_dict: Optional[bool] = None,
|
409 |
+
num_logits_to_keep: Optional[int] = 0,
|
410 |
+
**kwargs: Unpack[Dict]
|
411 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
412 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
413 |
+
output_hidden_states = (
|
414 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
415 |
+
)
|
416 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
417 |
+
|
418 |
+
outputs = self.model(
|
419 |
+
input_ids=input_ids,
|
420 |
+
attention_mask=attention_mask,
|
421 |
+
inputs_embeds=inputs_embeds,
|
422 |
+
past_key_values=past_key_values,
|
423 |
+
use_cache=use_cache,
|
424 |
+
output_attentions=output_attentions,
|
425 |
+
output_hidden_states=output_hidden_states,
|
426 |
+
return_dict=return_dict,
|
427 |
+
**kwargs
|
428 |
+
)
|
429 |
+
|
430 |
+
hidden_states = outputs[0]
|
431 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
432 |
+
|
433 |
+
loss, logits = None, None
|
434 |
+
if not fuse_linear_and_cross_entropy or labels is None:
|
435 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:])
|
436 |
+
if labels is not None:
|
437 |
+
if self.config.fuse_cross_entropy:
|
438 |
+
if fuse_linear_and_cross_entropy:
|
439 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
440 |
+
else:
|
441 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
442 |
+
else:
|
443 |
+
loss_fct = nn.CrossEntropyLoss()
|
444 |
+
# Enable model parallelism
|
445 |
+
labels = labels.to(hidden_states.device)
|
446 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
447 |
+
if fuse_linear_and_cross_entropy:
|
448 |
+
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
|
449 |
+
labels.view(-1),
|
450 |
+
self.lm_head.weight,
|
451 |
+
self.lm_head.bias)
|
452 |
+
else:
|
453 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
454 |
+
|
455 |
+
if not return_dict:
|
456 |
+
output = (logits,) + outputs[1:]
|
457 |
+
return (loss,) + output if loss is not None else output
|
458 |
+
|
459 |
+
return CausalLMOutputWithPast(
|
460 |
+
loss=loss,
|
461 |
+
logits=logits,
|
462 |
+
past_key_values=outputs.past_key_values,
|
463 |
+
hidden_states=outputs.hidden_states,
|
464 |
+
attentions=outputs.attentions,
|
465 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"50254": {
|
23 |
+
"content": " ",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"50255": {
|
31 |
+
"content": " ",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"50256": {
|
39 |
+
"content": " ",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"50257": {
|
47 |
+
"content": " ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"50258": {
|
55 |
+
"content": " ",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"50259": {
|
63 |
+
"content": " ",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"50260": {
|
71 |
+
"content": " ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"50261": {
|
79 |
+
"content": " ",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"50262": {
|
87 |
+
"content": " ",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"50263": {
|
95 |
+
"content": " ",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"50264": {
|
103 |
+
"content": " ",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"50265": {
|
111 |
+
"content": " ",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"50266": {
|
119 |
+
"content": " ",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"50267": {
|
127 |
+
"content": " ",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"50268": {
|
135 |
+
"content": " ",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"50269": {
|
143 |
+
"content": " ",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"50270": {
|
151 |
+
"content": " ",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"50271": {
|
159 |
+
"content": " ",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"50272": {
|
167 |
+
"content": " ",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"50273": {
|
175 |
+
"content": " ",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"50274": {
|
183 |
+
"content": " ",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"50275": {
|
191 |
+
"content": " ",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"50276": {
|
199 |
+
"content": " ",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"bos_token": "<|endoftext|>",
|
208 |
+
"clean_up_tokenization_spaces": false,
|
209 |
+
"eos_token": "<|endoftext|>",
|
210 |
+
"model_max_length": 1000000000000000019884624838656,
|
211 |
+
"pad_token": null,
|
212 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
213 |
+
"unk_token": "<|endoftext|>"
|
214 |
+
}
|