File size: 19,214 Bytes
ef217c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.attn import Attention
from fla.layers.rwkv7 import RWKV7Attention
from fla.models.rwkv7.configuration_rwkv7 import RWKV7Config
from fla.models.utils import Cache
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
LayerNorm)
from fla.modules.activations import ACT2FN
if TYPE_CHECKING:
from transformers.processing_utils import Unpack
logger = logging.get_logger(__name__)
class RWKV7FeedForward(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'sqrelu',
layer_idx: int = None
) -> RWKV7FeedForward:
super().__init__()
self.hidden_size = hidden_size
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio)
intermediate_size = 32 * ((intermediate_size + 32 - 1) // 32)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.x_k = nn.Parameter(torch.zeros(hidden_size))
self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
self.layer_idx = layer_idx
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
state: Optional[Cache] = None
) -> torch.Tensor:
if attention_mask is not None:
x = x.mul(attention_mask[:, -x.shape[-2]:, None])
if x.shape[1] == 1 and state is not None:
shifted = state[self.layer_idx]['ffn_state'].unsqueeze(1)
else:
shifted = self.time_shift(x)
if state is not None and state[self.layer_idx]['ffn_state'] is not None:
shifted[:, 0] = state[self.layer_idx]['ffn_state'][-1]
if state is not None:
# no need to update the offset twice
state.update(ffn_state=x[:, -1], layer_idx=self.layer_idx, offset=0)
return self.value(self.act_fn(self.key(x + (shifted - x) * self.x_k))), state
class RWKV7Block(nn.Module):
def __init__(
self,
config: RWKV7Config,
layer_idx: int
) -> RWKV7Block:
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.layer_idx = layer_idx
if config.norm_first and layer_idx == 0:
self.pre_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
self.attn_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
if config.attn is not None and layer_idx in config.attn['layers']:
self.attn = Attention(
hidden_size=config.hidden_size,
num_heads=config.attn['num_heads'],
num_kv_heads=config.attn['num_kv_heads'],
window_size=config.attn['window_size'],
rope_theta=config.attn['rope_theta'],
max_position_embeddings=config.max_position_embeddings,
layer_idx=layer_idx
)
else:
self.attn = RWKV7Attention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
head_dim=config.head_dim,
num_heads=config.num_heads,
decay_low_rank_dim=config.decay_low_rank_dim,
gate_low_rank_dim=config.gate_low_rank_dim,
a_low_rank_dim=config.a_low_rank_dim,
v_low_rank_dim=config.v_low_rank_dim,
norm_eps=config.norm_eps,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.ffn_norm = LayerNorm(hidden_size=config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
self.ffn = RWKV7FeedForward(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
layer_idx=layer_idx
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
v_first: torch.Tensor = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = self.pre_norm(hidden_states) if hasattr(self, 'pre_norm') else hidden_states
hidden_states = self.attn_norm(residual)
hidden_states, attentions, past_key_values, v_first = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
v_first=v_first,
**kwargs
)
hidden_states, residual = self.ffn_norm(hidden_states, residual, True)
hidden_states, past_key_values = self.ffn(hidden_states, attention_mask, past_key_values)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values, v_first)
return outputs
class RWKV7PreTrainedModel(PreTrainedModel):
config_class = RWKV7Config
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_no_split_modules = ['RWKV7Block']
_supports_cache_class = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Parameter):
nn.init.normal_(module, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif hasattr(module, 'reset_parameters'):
module.reset_parameters()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class RWKV7Model(RWKV7PreTrainedModel):
def __init__(self, config: RWKV7Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([RWKV7Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = LayerNorm(config.hidden_size, bias=config.norm_bias, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs: Unpack[Dict]
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`RWKV7Model` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache and not isinstance(past_key_values, Cache):
past_key_values = Cache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
v_first = torch.zeros_like(hidden_states)
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values, v_first = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
v_first,
**kwargs
)
else:
hidden_states, attentions, past_key_values, v_first = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
v_first=v_first,
**kwargs
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attns
)
class RWKV7ForCausalLM(RWKV7PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RWKV7Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co./docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: bool = True,
num_logits_to_keep: Optional[int] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
if num_logits_to_keep is not None:
model_inputs['num_logits_to_keep'] = num_logits_to_keep
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': use_cache,
'attention_mask': attention_mask,
'num_logits_to_keep': num_logits_to_keep,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_logits_to_keep: Optional[int] = 0,
**kwargs: Unpack[Dict]
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs
)
hidden_states = outputs[0]
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
loss, logits = None, None
if not fuse_linear_and_cross_entropy or labels is None:
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:])
if labels is not None:
if self.config.fuse_cross_entropy:
if fuse_linear_and_cross_entropy:
loss_fct = FusedLinearCrossEntropyLoss()
else:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(hidden_states.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
if fuse_linear_and_cross_entropy:
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
labels.view(-1),
self.lm_head.weight,
self.lm_head.bias)
else:
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|