krinal's picture
Librarian Bot: Add base_model information to model (#1)
d61848d
metadata
language:
  - en
license: apache-2.0
library_name: span-marker
tags:
  - token-classification
  - named-enity-recognition
datasets:
  - DFKI-SLT/few-nerd
pipeline_tag: token-classification
base_model: roberta-base
model-index:
  - name: span-marker-robert-base
    results: []

span-marker-robert-base

This model is a fine-tuned version of roberta-base on few-nerd dataset using SpanMarker an module for NER.

Usage

  from span_marker import SpanMarkerModel
  
  model = SpanMarkerModel.from_pretrained("krinal/span-marker-robert-base")
  
  ner_result = model.predict("Argentine captain Lionel Messi won Golden Ball at FIFA world cup 2022")

Training and evaluation data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Evaluation

It achieves the following results on the evaluation set:

  • Loss: 0.0214
  • Overall Precision: 0.7642
  • Overall Recall: 0.7947
  • Overall F1: 0.7791
  • Overall Accuracy: 0.9397

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0214 0.08 100 0.0219 0.7641 0.7679 0.7660 0.9330
0.0199 0.16 200 0.0243 0.7442 0.7679 0.7559 0.9348
0.0179 0.24 300 0.0212 0.7730 0.7580 0.7654 0.9361
0.0188 0.33 400 0.0225 0.7616 0.7710 0.7662 0.9343
0.0149 0.41 500 0.0240 0.7537 0.7783 0.7658 0.9375
0.015 0.49 600 0.0230 0.7540 0.7829 0.7682 0.9362
0.0137 0.57 700 0.0232 0.7746 0.7538 0.7640 0.9319
0.0123 0.65 800 0.0218 0.7651 0.7879 0.7763 0.9393
0.0103 0.73 900 0.0223 0.7688 0.7964 0.7824 0.9397
0.0108 0.82 1000 0.0209 0.7763 0.7816 0.7789 0.9397
0.0116 0.9 1100 0.0213 0.7743 0.7879 0.7811 0.9398
0.0119 0.98 1200 0.0214 0.7653 0.7947 0.7797 0.9400

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
  • span-marker 1.2.3