--- language: - en license: apache-2.0 library_name: span-marker tags: - token-classification - named-enity-recognition datasets: - DFKI-SLT/few-nerd pipeline_tag: token-classification base_model: roberta-base model-index: - name: span-marker-robert-base results: [] --- # span-marker-robert-base This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on [few-nerd](https://huggingface.co./datasets/DFKI-SLT/few-nerd) dataset using [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) an module for NER. # Usage ```python from span_marker import SpanMarkerModel model = SpanMarkerModel.from_pretrained("krinal/span-marker-robert-base") ner_result = model.predict("Argentine captain Lionel Messi won Golden Ball at FIFA world cup 2022") ``` ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Evaluation It achieves the following results on the evaluation set: - Loss: 0.0214 - Overall Precision: 0.7642 - Overall Recall: 0.7947 - Overall F1: 0.7791 - Overall Accuracy: 0.9397 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0214 | 0.08 | 100 | 0.0219 | 0.7641 | 0.7679 | 0.7660 | 0.9330 | | 0.0199 | 0.16 | 200 | 0.0243 | 0.7442 | 0.7679 | 0.7559 | 0.9348 | | 0.0179 | 0.24 | 300 | 0.0212 | 0.7730 | 0.7580 | 0.7654 | 0.9361 | | 0.0188 | 0.33 | 400 | 0.0225 | 0.7616 | 0.7710 | 0.7662 | 0.9343 | | 0.0149 | 0.41 | 500 | 0.0240 | 0.7537 | 0.7783 | 0.7658 | 0.9375 | | 0.015 | 0.49 | 600 | 0.0230 | 0.7540 | 0.7829 | 0.7682 | 0.9362 | | 0.0137 | 0.57 | 700 | 0.0232 | 0.7746 | 0.7538 | 0.7640 | 0.9319 | | 0.0123 | 0.65 | 800 | 0.0218 | 0.7651 | 0.7879 | 0.7763 | 0.9393 | | 0.0103 | 0.73 | 900 | 0.0223 | 0.7688 | 0.7964 | 0.7824 | 0.9397 | | 0.0108 | 0.82 | 1000 | 0.0209 | 0.7763 | 0.7816 | 0.7789 | 0.9397 | | 0.0116 | 0.9 | 1100 | 0.0213 | 0.7743 | 0.7879 | 0.7811 | 0.9398 | | 0.0119 | 0.98 | 1200 | 0.0214 | 0.7653 | 0.7947 | 0.7797 | 0.9400 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3 - span-marker 1.2.3