path
stringlengths 12
84
| imports
sequencelengths 0
4.45k
| premises
listlengths 0
625
|
---|---|---|
.lake/packages/lean4/src/lean/Init/Prelude.lean | [] | [
{
"full_name": "id",
"code": "@[inline] def id {α : Sort u} (a : α) : α := a",
"start": [
21,
1
],
"end": [
33,
47
],
"kind": "commanddeclaration"
},
{
"full_name": "Function.comp",
"code": "@[inline] def Function.comp {α : Sort u} {β : Sort v} {δ : Sort w} (f : β → δ) (g : α → β) : α → δ :=\n fun x => f (g x)",
"start": [
35,
1
],
"end": [
53,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Function.const",
"code": "@[inline] def Function.const {α : Sort u} (β : Sort v) (a : α) : β → α :=\n fun _ => a",
"start": [
55,
1
],
"end": [
67,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "letFun",
"code": "@[irreducible] def letFun {α : Sort u} {β : α → Sort v} (v : α) (f : (x : α) → β x) : β v := f v",
"start": [
69,
1
],
"end": [
80,
97
],
"kind": "commanddeclaration"
},
{
"full_name": "inferInstance",
"code": "abbrev inferInstance {α : Sort u} [i : α] : α := i",
"start": [
83,
1
],
"end": [
99,
51
],
"kind": "commanddeclaration"
},
{
"full_name": "inferInstanceAs",
"code": "abbrev inferInstanceAs (α : Sort u) [i : α] : α := i",
"start": [
102,
1
],
"end": [
113,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "PUnit",
"code": "inductive PUnit : Sort u where\n \n | unit : PUnit",
"start": [
116,
1
],
"end": [
124,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Unit",
"code": "abbrev Unit : Type := PUnit",
"start": [
126,
1
],
"end": [
142,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Unit.unit",
"code": "@[match_pattern] abbrev Unit.unit : Unit := PUnit.unit",
"start": [
144,
1
],
"end": [
148,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "lcErased",
"code": "unsafe axiom lcErased : Type",
"start": [
150,
1
],
"end": [
151,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "lcProof",
"code": "unsafe axiom lcProof {α : Prop} : α",
"start": [
153,
1
],
"end": [
162,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "lcCast",
"code": "unsafe axiom lcCast {α : Sort u} {β : Sort v} (a : α) : β",
"start": [
164,
1
],
"end": [
167,
58
],
"kind": "commanddeclaration"
},
{
"full_name": "lcUnreachable",
"code": "unsafe axiom lcUnreachable {α : Sort u} : α",
"start": [
170,
1
],
"end": [
182,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "True",
"code": "inductive True : Prop where\n \n | intro : True",
"start": [
184,
1
],
"end": [
192,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "False",
"code": "inductive False : Prop",
"start": [
194,
1
],
"end": [
202,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "Empty",
"code": "inductive Empty : Type",
"start": [
204,
1
],
"end": [
208,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "PEmpty",
"code": "inductive PEmpty : Sort u where",
"start": [
211,
1
],
"end": [
215,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "Not",
"code": "def Not (a : Prop) : Prop := a → False",
"start": [
217,
1
],
"end": [
224,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "False.elim",
"code": "@[macro_inline] def False.elim {C : Sort u} (h : False) : C :=\n h.rec",
"start": [
226,
1
],
"end": [
237,
8
],
"kind": "commanddeclaration"
},
{
"full_name": "absurd",
"code": "@[macro_inline] def absurd {a : Prop} {b : Sort v} (h₁ : a) (h₂ : Not a) : b :=\n (h₂ h₁).rec",
"start": [
239,
1
],
"end": [
247,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq",
"code": "inductive Eq : α → α → Prop where\n \n | refl (a : α) : Eq a a",
"start": [
249,
1
],
"end": [
279,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.ndrec",
"code": "@[simp] abbrev Eq.ndrec.{u1, u2} {α : Sort u2} {a : α} {motive : α → Sort u1} (m : motive a) {b : α} (h : Eq a b) : motive b :=\n h.rec m",
"start": [
281,
1
],
"end": [
283,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "rfl",
"code": "@[match_pattern] def rfl {α : Sort u} {a : α} : Eq a a := Eq.refl a",
"start": [
285,
1
],
"end": [
294,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "id_eq",
"code": "@[simp] theorem id_eq (a : α) : Eq (id a) a",
"start": [
296,
1
],
"end": [
297,
51
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.subst",
"code": "theorem Eq.subst {α : Sort u} {motive : α → Prop} {a b : α} (h₁ : Eq a b) (h₂ : motive a) : motive b",
"start": [
299,
1
],
"end": [
313,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.symm",
"code": "theorem Eq.symm {α : Sort u} {a b : α} (h : Eq a b) : Eq b a",
"start": [
315,
1
],
"end": [
324,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.trans",
"code": "theorem Eq.trans {α : Sort u} {a b c : α} (h₁ : Eq a b) (h₂ : Eq b c) : Eq a c",
"start": [
326,
1
],
"end": [
336,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "cast",
"code": "@[macro_inline] def cast {α β : Sort u} (h : Eq α β) (a : α) : β :=\n h.rec a",
"start": [
338,
1
],
"end": [
350,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "congrArg",
"code": "theorem congrArg {α : Sort u} {β : Sort v} {a₁ a₂ : α} (f : α → β) (h : Eq a₁ a₂) : Eq (f a₁) (f a₂)",
"start": [
352,
1
],
"end": [
363,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "congr",
"code": "theorem congr {α : Sort u} {β : Sort v} {f₁ f₂ : α → β} {a₁ a₂ : α} (h₁ : Eq f₁ f₂) (h₂ : Eq a₁ a₂) : Eq (f₁ a₁) (f₂ a₂)",
"start": [
365,
1
],
"end": [
373,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "congrFun",
"code": "theorem congrFun {α : Sort u} {β : α → Sort v} {f g : (x : α) → β x} (h : Eq f g) (a : α) : Eq (f a) (g a)",
"start": [
375,
1
],
"end": [
377,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.lcInv",
"code": "unsafe axiom Quot.lcInv {α : Sort u} {r : α → α → Prop} (q : Quot r) : α",
"start": [
439,
1
],
"end": [
442,
73
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq",
"code": "inductive HEq : {α : Sort u} → α → {β : Sort u} → β → Prop where\n \n | refl (a : α) : HEq a a",
"start": [
444,
1
],
"end": [
458,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq.rfl",
"code": "@[match_pattern] protected def HEq.rfl {α : Sort u} {a : α} : HEq a a :=\n HEq.refl a",
"start": [
460,
1
],
"end": [
462,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_of_heq",
"code": "theorem eq_of_heq {α : Sort u} {a a' : α} (h : HEq a a') : Eq a a'",
"start": [
464,
1
],
"end": [
468,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod",
"code": "structure Prod (α : Type u) (β : Type v) where\n \n mk ::\n \n fst : α\n \n snd : β",
"start": [
470,
1
],
"end": [
485,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "PProd",
"code": "@[pp_using_anonymous_constructor]\nstructure PProd (α : Sort u) (β : Sort v) where\n \n fst : α\n \n snd : β",
"start": [
489,
1
],
"end": [
498,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "MProd",
"code": "structure MProd (α β : Type u) where\n \n fst : α\n \n snd : β",
"start": [
500,
1
],
"end": [
508,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "And",
"code": "@[pp_using_anonymous_constructor]\nstructure And (a b : Prop) : Prop where\n \n intro ::\n \n left : a\n \n right : b",
"start": [
510,
1
],
"end": [
524,
12
],
"kind": "commanddeclaration"
},
{
"full_name": "Or",
"code": "inductive Or (a b : Prop) : Prop where\n \n | inl (h : a) : Or a b\n \n | inr (h : b) : Or a b",
"start": [
526,
1
],
"end": [
536,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.intro_left",
"code": "theorem Or.intro_left (b : Prop) (h : a) : Or a b",
"start": [
538,
1
],
"end": [
540,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.intro_right",
"code": "theorem Or.intro_right (a : Prop) (h : b) : Or a b",
"start": [
542,
1
],
"end": [
544,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.elim",
"code": "theorem Or.elim {c : Prop} (h : Or a b) (left : a → c) (right : b → c) : c",
"start": [
546,
1
],
"end": [
553,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.resolve_left",
"code": "theorem Or.resolve_left (h: Or a b) (na : Not a) : b",
"start": [
555,
1
],
"end": [
555,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.resolve_right",
"code": "theorem Or.resolve_right (h: Or a b) (nb : Not b) : a",
"start": [
556,
1
],
"end": [
556,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.neg_resolve_left",
"code": "theorem Or.neg_resolve_left (h : Or (Not a) b) (ha : a) : b",
"start": [
557,
1
],
"end": [
557,
86
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.neg_resolve_right",
"code": "theorem Or.neg_resolve_right (h : Or a (Not b)) (nb : b) : a",
"start": [
558,
1
],
"end": [
558,
86
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool",
"code": "inductive Bool : Type where\n \n | false : Bool\n \n | true : Bool",
"start": [
560,
1
],
"end": [
571,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "Subtype",
"code": "@[pp_using_anonymous_constructor]\nstructure Subtype {α : Sort u} (p : α → Prop) where\n \n val : α\n \n property : p val",
"start": [
575,
1
],
"end": [
590,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "optParam",
"code": "@[reducible] def optParam (α : Sort u) (default : α) : Sort u := α",
"start": [
593,
1
],
"end": [
600,
67
],
"kind": "commanddeclaration"
},
{
"full_name": "outParam",
"code": "@[reducible] def outParam (α : Sort u) : Sort u := α",
"start": [
602,
1
],
"end": [
618,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "semiOutParam",
"code": "@[reducible] def semiOutParam (α : Sort u) : Sort u := α",
"start": [
620,
1
],
"end": [
641,
57
],
"kind": "commanddeclaration"
},
{
"full_name": "namedPattern",
"code": "@[reducible] def namedPattern {α : Sort u} (x a : α) (h : Eq x a) : α := a",
"start": [
644,
1
],
"end": [
645,
75
],
"kind": "commanddeclaration"
},
{
"full_name": "sorryAx",
"code": "@[extern \"lean_sorry\", never_extract]\naxiom sorryAx (α : Sort u) (synthetic := false) : α",
"start": [
647,
1
],
"end": [
664,
52
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_false_of_ne_true",
"code": "theorem eq_false_of_ne_true : {b : Bool} → Not (Eq b true) → Eq b false",
"start": [
666,
1
],
"end": [
668,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_true_of_ne_false",
"code": "theorem eq_true_of_ne_false : {b : Bool} → Not (Eq b false) → Eq b true",
"start": [
670,
1
],
"end": [
672,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_false_of_eq_true",
"code": "theorem ne_false_of_eq_true : {b : Bool} → Eq b true → Not (Eq b false)",
"start": [
674,
1
],
"end": [
676,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_true_of_eq_false",
"code": "theorem ne_true_of_eq_false : {b : Bool} → Eq b false → Not (Eq b true)",
"start": [
678,
1
],
"end": [
680,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "Inhabited",
"code": "class Inhabited (α : Sort u) where\n \n default : α",
"start": [
682,
1
],
"end": [
697,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "Nonempty",
"code": "class inductive Nonempty (α : Sort u) : Prop where\n \n | intro (val : α) : Nonempty α",
"start": [
701,
1
],
"end": [
711,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Classical.choice",
"code": "axiom Classical.choice {α : Sort u} : Nonempty α → α",
"start": [
713,
1
],
"end": [
735,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Nonempty.elim",
"code": "protected theorem Nonempty.elim {α : Sort u} {p : Prop} (h₁ : Nonempty α) (h₂ : α → p) : p",
"start": [
737,
1
],
"end": [
745,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Classical.ofNonempty",
"code": "noncomputable def Classical.ofNonempty {α : Sort u} [Nonempty α] : α :=\n Classical.choice inferInstance",
"start": [
750,
1
],
"end": [
755,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "PLift",
"code": "structure PLift (α : Sort u) : Type u where\n up ::\n down : α",
"start": [
774,
1
],
"end": [
777,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "PLift.up_down",
"code": "theorem PLift.up_down {α : Sort u} (b : PLift α) : Eq (up (down b)) b",
"start": [
779,
1
],
"end": [
780,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "PLift.down_up",
"code": "theorem PLift.down_up {α : Sort u} (a : α) : Eq (down (up a)) a",
"start": [
782,
1
],
"end": [
783,
71
],
"kind": "commanddeclaration"
},
{
"full_name": "NonemptyType",
"code": "def NonemptyType := Subtype fun α : Type u => Nonempty α",
"start": [
785,
1
],
"end": [
791,
57
],
"kind": "commanddeclaration"
},
{
"full_name": "NonemptyType.type",
"code": "abbrev NonemptyType.type (type : NonemptyType.{u}) : Type u :=\n type.val",
"start": [
793,
1
],
"end": [
795,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "ULift",
"code": "structure ULift.{r, s} (α : Type s) : Type (max s r) where\n up ::\n down : α",
"start": [
801,
1
],
"end": [
811,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "ULift.up_down",
"code": "theorem ULift.up_down {α : Type u} (b : ULift.{v} α) : Eq (up (down b)) b",
"start": [
813,
1
],
"end": [
814,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "ULift.down_up",
"code": "theorem ULift.down_up {α : Type u} (a : α) : Eq (down (up.{v} a)) a",
"start": [
816,
1
],
"end": [
817,
75
],
"kind": "commanddeclaration"
},
{
"full_name": "Decidable",
"code": "class inductive Decidable (p : Prop) where\n \n | isFalse (h : Not p) : Decidable p\n \n | isTrue (h : p) : Decidable p",
"start": [
819,
1
],
"end": [
843,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Decidable.decide",
"code": "@[inline_if_reduce, nospecialize] def Decidable.decide (p : Prop) [h : Decidable p] : Bool :=\n h.casesOn (fun _ => false) (fun _ => true)",
"start": [
845,
1
],
"end": [
852,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "DecidablePred",
"code": "abbrev DecidablePred {α : Sort u} (r : α → Prop) :=\n (a : α) → Decidable (r a)",
"start": [
856,
1
],
"end": [
858,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "DecidableRel",
"code": "abbrev DecidableRel {α : Sort u} (r : α → α → Prop) :=\n (a b : α) → Decidable (r a b)",
"start": [
860,
1
],
"end": [
862,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "DecidableEq",
"code": "abbrev DecidableEq (α : Sort u) :=\n (a b : α) → Decidable (Eq a b)",
"start": [
864,
1
],
"end": [
869,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "decEq",
"code": "def decEq {α : Sort u} [inst : DecidableEq α] (a b : α) : Decidable (Eq a b) :=\n inst a b",
"start": [
871,
1
],
"end": [
873,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_eq_true",
"code": "theorem decide_eq_true : [inst : Decidable p] → p → Eq (decide p) true",
"start": [
876,
1
],
"end": [
878,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_eq_false",
"code": "theorem decide_eq_false : [Decidable p] → Not p → Eq (decide p) false",
"start": [
880,
1
],
"end": [
882,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "of_decide_eq_true",
"code": "theorem of_decide_eq_true [inst : Decidable p] : Eq (decide p) true → p",
"start": [
884,
1
],
"end": [
887,
70
],
"kind": "commanddeclaration"
},
{
"full_name": "of_decide_eq_false",
"code": "theorem of_decide_eq_false [inst : Decidable p] : Eq (decide p) false → Not p",
"start": [
889,
1
],
"end": [
892,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "of_decide_eq_self_eq_true",
"code": "theorem of_decide_eq_self_eq_true [inst : DecidableEq α] (a : α) : Eq (decide (Eq a a)) true",
"start": [
894,
1
],
"end": [
897,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.decEq",
"code": "@[inline] def Bool.decEq (a b : Bool) : Decidable (Eq a b) :=\n match a, b with\n | false, false => isTrue rfl\n | false, true => isFalse (fun h => Bool.noConfusion h)\n | true, false => isFalse (fun h => Bool.noConfusion h)\n | true, true => isTrue rfl",
"start": [
899,
1
],
"end": [
905,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "BEq",
"code": "class BEq (α : Type u) where\n \n beq : α → α → Bool",
"start": [
910,
1
],
"end": [
923,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "dite",
"code": "@[macro_inline] def dite {α : Sort u} (c : Prop) [h : Decidable c] (t : c → α) (e : Not c → α) : α :=\n h.casesOn e t",
"start": [
931,
1
],
"end": [
946,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "ite",
"code": "@[macro_inline] def ite {α : Sort u} (c : Prop) [h : Decidable c] (t e : α) : α :=\n h.casesOn (fun _ => e) (fun _ => t)",
"start": [
950,
1
],
"end": [
971,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "cond",
"code": "@[macro_inline] def cond {α : Type u} (c : Bool) (x y : α) : α :=\n match c with\n | true => x\n | false => y",
"start": [
1000,
1
],
"end": [
1009,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "or",
"code": "@[macro_inline] def or (x y : Bool) : Bool :=\n match x with\n | true => true\n | false => y",
"start": [
1011,
1
],
"end": [
1020,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "and",
"code": "@[macro_inline] def and (x y : Bool) : Bool :=\n match x with\n | false => false\n | true => y",
"start": [
1022,
1
],
"end": [
1031,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "not",
"code": "@[inline] def not : Bool → Bool\n | true => false\n | false => true",
"start": [
1033,
1
],
"end": [
1039,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat",
"code": "inductive Nat where\n \n | zero : Nat\n \n | succ (n : Nat) : Nat",
"start": [
1041,
1
],
"end": [
1083,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "OfNat",
"code": "class OfNat (α : Type u) (_ : Nat) where\n \n ofNat : α",
"start": [
1088,
1
],
"end": [
1105,
12
],
"kind": "commanddeclaration"
},
{
"full_name": "instOfNatNat",
"code": "@[default_instance 100] \ninstance instOfNatNat (n : Nat) : OfNat Nat n where\n ofNat := n",
"start": [
1107,
1
],
"end": [
1109,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "LE",
"code": "class LE (α : Type u) where\n \n le : α → α → Prop",
"start": [
1111,
1
],
"end": [
1114,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "LT",
"code": "class LT (α : Type u) where\n \n lt : α → α → Prop",
"start": [
1116,
1
],
"end": [
1119,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "GE.ge",
"code": "@[reducible] def GE.ge {α : Type u} [LE α] (a b : α) : Prop := LE.le b a",
"start": [
1121,
1
],
"end": [
1122,
73
],
"kind": "commanddeclaration"
},
{
"full_name": "GT.gt",
"code": "@[reducible] def GT.gt {α : Type u} [LT α] (a b : α) : Prop := LT.lt b a",
"start": [
1123,
1
],
"end": [
1124,
73
],
"kind": "commanddeclaration"
},
{
"full_name": "Max",
"code": "class Max (α : Type u) where\n \n max : α → α → α",
"start": [
1126,
1
],
"end": [
1129,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "maxOfLe",
"code": "@[inline]\ndef maxOfLe [LE α] [DecidableRel (@LE.le α _)] : Max α where\n max x y := ite (LE.le x y) y x",
"start": [
1133,
1
],
"end": [
1137,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Min",
"code": "class Min (α : Type u) where\n \n min : α → α → α",
"start": [
1139,
1
],
"end": [
1142,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "minOfLe",
"code": "@[inline]\ndef minOfLe [LE α] [DecidableRel (@LE.le α _)] : Min α where\n min x y := ite (LE.le x y) x y",
"start": [
1146,
1
],
"end": [
1150,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Trans",
"code": "class Trans (r : α → β → Sort u) (s : β → γ → Sort v) (t : outParam (α → γ → Sort w)) where\n \n trans : r a b → s b c → t a c",
"start": [
1152,
1
],
"end": [
1163,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "HAdd",
"code": "class HAdd (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAdd : α → β → γ",
"start": [
1173,
1
],
"end": [
1180,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HSub",
"code": "class HSub (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hSub : α → β → γ",
"start": [
1182,
1
],
"end": [
1190,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HMul",
"code": "class HMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hMul : α → β → γ",
"start": [
1192,
1
],
"end": [
1199,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HDiv",
"code": "class HDiv (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hDiv : α → β → γ",
"start": [
1201,
1
],
"end": [
1217,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HMod",
"code": "class HMod (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hMod : α → β → γ",
"start": [
1219,
1
],
"end": [
1228,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HPow",
"code": "class HPow (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hPow : α → β → γ",
"start": [
1230,
1
],
"end": [
1237,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HAppend",
"code": "class HAppend (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAppend : α → β → γ",
"start": [
1239,
1
],
"end": [
1246,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "HOrElse",
"code": "class HOrElse (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hOrElse : α → (Unit → β) → γ",
"start": [
1248,
1
],
"end": [
1258,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "HAndThen",
"code": "class HAndThen (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAndThen : α → (Unit → β) → γ",
"start": [
1260,
1
],
"end": [
1270,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "HAnd",
"code": "class HAnd (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hAnd : α → β → γ",
"start": [
1272,
1
],
"end": [
1276,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HXor",
"code": "class HXor (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hXor : α → β → γ",
"start": [
1278,
1
],
"end": [
1282,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "HOr",
"code": "class HOr (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hOr : α → β → γ",
"start": [
1284,
1
],
"end": [
1288,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "HShiftLeft",
"code": "class HShiftLeft (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hShiftLeft : α → β → γ",
"start": [
1290,
1
],
"end": [
1297,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "HShiftRight",
"code": "class HShiftRight (α : Type u) (β : Type v) (γ : outParam (Type w)) where\n \n hShiftRight : α → β → γ",
"start": [
1299,
1
],
"end": [
1305,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Add",
"code": "class Add (α : Type u) where\n \n add : α → α → α",
"start": [
1307,
1
],
"end": [
1310,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Sub",
"code": "class Sub (α : Type u) where\n \n sub : α → α → α",
"start": [
1312,
1
],
"end": [
1315,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Mul",
"code": "class Mul (α : Type u) where\n \n mul : α → α → α",
"start": [
1317,
1
],
"end": [
1320,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Neg",
"code": "class Neg (α : Type u) where\n \n neg : α → α",
"start": [
1322,
1
],
"end": [
1329,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "Div",
"code": "class Div (α : Type u) where\n \n div : α → α → α",
"start": [
1331,
1
],
"end": [
1334,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Mod",
"code": "class Mod (α : Type u) where\n \n mod : α → α → α",
"start": [
1336,
1
],
"end": [
1339,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Dvd",
"code": "class Dvd (α : Type _) where\n \n dvd : α → α → Prop",
"start": [
1341,
1
],
"end": [
1344,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Pow",
"code": "class Pow (α : Type u) (β : Type v) where\n \n pow : α → β → α",
"start": [
1346,
1
],
"end": [
1358,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "NatPow",
"code": "class NatPow (α : Type u) where\n \n protected pow : α → Nat → α",
"start": [
1360,
1
],
"end": [
1368,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "HomogeneousPow",
"code": "class HomogeneousPow (α : Type u) where\n \n protected pow : α → α → α",
"start": [
1370,
1
],
"end": [
1380,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Append",
"code": "class Append (α : Type u) where\n \n append : α → α → α",
"start": [
1382,
1
],
"end": [
1385,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "OrElse",
"code": "class OrElse (α : Type u) where\n \n orElse : α → (Unit → α) → α",
"start": [
1387,
1
],
"end": [
1394,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "AndThen",
"code": "class AndThen (α : Type u) where\n \n andThen : α → (Unit → α) → α",
"start": [
1396,
1
],
"end": [
1403,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "AndOp",
"code": "class AndOp (α : Type u) where\n \n and : α → α → α",
"start": [
1405,
1
],
"end": [
1411,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Xor",
"code": "class Xor (α : Type u) where\n \n xor : α → α → α",
"start": [
1413,
1
],
"end": [
1416,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "OrOp",
"code": "class OrOp (α : Type u) where\n \n or : α → α → α",
"start": [
1418,
1
],
"end": [
1424,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Complement",
"code": "class Complement (α : Type u) where\n \n complement : α → α",
"start": [
1426,
1
],
"end": [
1429,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "ShiftLeft",
"code": "class ShiftLeft (α : Type u) where\n \n shiftLeft : α → α → α",
"start": [
1431,
1
],
"end": [
1434,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "ShiftRight",
"code": "class ShiftRight (α : Type u) where\n \n shiftRight : α → α → α",
"start": [
1436,
1
],
"end": [
1439,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "instHAdd",
"code": "@[default_instance]\ninstance instHAdd [Add α] : HAdd α α α where\n hAdd a b := Add.add a b",
"start": [
1441,
1
],
"end": [
1443,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "instHSub",
"code": "@[default_instance]\ninstance instHSub [Sub α] : HSub α α α where\n hSub a b := Sub.sub a b",
"start": [
1445,
1
],
"end": [
1447,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "instHMul",
"code": "@[default_instance]\ninstance instHMul [Mul α] : HMul α α α where\n hMul a b := Mul.mul a b",
"start": [
1449,
1
],
"end": [
1451,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "instHDiv",
"code": "@[default_instance]\ninstance instHDiv [Div α] : HDiv α α α where\n hDiv a b := Div.div a b",
"start": [
1453,
1
],
"end": [
1455,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "instHMod",
"code": "@[default_instance]\ninstance instHMod [Mod α] : HMod α α α where\n hMod a b := Mod.mod a b",
"start": [
1457,
1
],
"end": [
1459,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "instHPow",
"code": "@[default_instance]\ninstance instHPow [Pow α β] : HPow α β α where\n hPow a b := Pow.pow a b",
"start": [
1461,
1
],
"end": [
1463,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "instPowNat",
"code": "@[default_instance]\ninstance instPowNat [NatPow α] : Pow α Nat where\n pow a n := NatPow.pow a n",
"start": [
1465,
1
],
"end": [
1467,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Membership",
"code": "class Membership (α : outParam (Type u)) (γ : Type v) where\n \n mem : α → γ → Prop",
"start": [
1511,
1
],
"end": [
1518,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.add",
"code": "@[extern \"lean_nat_add\"]\nprotected def Nat.add : (@& Nat) → (@& Nat) → Nat\n | a, Nat.zero => a\n | a, Nat.succ b => Nat.succ (Nat.add a b)",
"start": [
1521,
1
],
"end": [
1531,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "instAddNat",
"code": "instance instAddNat : Add Nat where\n add := Nat.add",
"start": [
1533,
1
],
"end": [
1534,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.mul",
"code": "@[extern \"lean_nat_mul\"]\nprotected def Nat.mul : (@& Nat) → (@& Nat) → Nat\n | _, 0 => 0\n | a, Nat.succ b => Nat.add (Nat.mul a b) a",
"start": [
1541,
1
],
"end": [
1551,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "instMulNat",
"code": "instance instMulNat : Mul Nat where\n mul := Nat.mul",
"start": [
1553,
1
],
"end": [
1554,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.pow",
"code": "@[extern \"lean_nat_pow\"]\nprotected def Nat.pow (m : @& Nat) : (@& Nat) → Nat\n | 0 => 1\n | succ n => Nat.mul (Nat.pow m n) m",
"start": [
1557,
1
],
"end": [
1567,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "instNatPowNat",
"code": "instance instNatPowNat : NatPow Nat := ⟨Nat.pow⟩",
"start": [
1569,
1
],
"end": [
1569,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.beq",
"code": "@[extern \"lean_nat_dec_eq\"]\ndef Nat.beq : (@& Nat) → (@& Nat) → Bool\n | zero, zero => true\n | zero, succ _ => false\n | succ _, zero => false\n | succ n, succ m => beq n m",
"start": [
1572,
1
],
"end": [
1584,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.eq_of_beq_eq_true",
"code": "theorem Nat.eq_of_beq_eq_true : {n m : Nat} → Eq (beq n m) true → Eq n m",
"start": [
1589,
1
],
"end": [
1596,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.ne_of_beq_eq_false",
"code": "theorem Nat.ne_of_beq_eq_false : {n m : Nat} → Eq (beq n m) false → Not (Eq n m)",
"start": [
1598,
1
],
"end": [
1604,
71
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.decEq",
"code": "@[reducible, extern \"lean_nat_dec_eq\"]\nprotected def Nat.decEq (n m : @& Nat) : Decidable (Eq n m) :=\n match h:beq n m with\n | true => isTrue (eq_of_beq_eq_true h)\n | false => isFalse (ne_of_beq_eq_false h)",
"start": [
1606,
1
],
"end": [
1617,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.ble",
"code": "@[extern \"lean_nat_dec_le\"]\ndef Nat.ble : @& Nat → @& Nat → Bool\n | zero, zero => true\n | zero, succ _ => true\n | succ _, zero => false\n | succ n, succ m => ble n m",
"start": [
1622,
1
],
"end": [
1634,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le",
"code": "protected inductive Nat.le (n : Nat) : Nat → Prop\n \n | refl : Nat.le n n\n \n | step {m} : Nat.le n m → Nat.le n (succ m)",
"start": [
1636,
1
],
"end": [
1644,
46
],
"kind": "commanddeclaration"
},
{
"full_name": "instLENat",
"code": "instance instLENat : LE Nat where\n le := Nat.le",
"start": [
1646,
1
],
"end": [
1647,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.lt",
"code": "protected def Nat.lt (n m : Nat) : Prop :=\n Nat.le (succ n) m",
"start": [
1649,
1
],
"end": [
1651,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "instLTNat",
"code": "instance instLTNat : LT Nat where\n lt := Nat.lt",
"start": [
1653,
1
],
"end": [
1654,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.not_succ_le_zero",
"code": "theorem Nat.not_succ_le_zero : ∀ (n : Nat), LE.le (succ n) 0 → False",
"start": [
1656,
1
],
"end": [
1658,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.not_lt_zero",
"code": "theorem Nat.not_lt_zero (n : Nat) : Not (LT.lt n 0)",
"start": [
1660,
1
],
"end": [
1661,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.zero_le",
"code": "theorem Nat.zero_le : (n : Nat) → LE.le 0 n",
"start": [
1663,
1
],
"end": [
1665,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.succ_le_succ",
"code": "theorem Nat.succ_le_succ : LE.le n m → LE.le (succ n) (succ m)",
"start": [
1667,
1
],
"end": [
1669,
50
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.zero_lt_succ",
"code": "theorem Nat.zero_lt_succ (n : Nat) : LT.lt 0 (succ n)",
"start": [
1671,
1
],
"end": [
1672,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_step",
"code": "theorem Nat.le_step (h : LE.le n m) : LE.le n (succ m)",
"start": [
1674,
1
],
"end": [
1675,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_trans",
"code": "protected theorem Nat.le_trans {n m k : Nat} : LE.le n m → LE.le m k → LE.le n k",
"start": [
1677,
1
],
"end": [
1679,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.lt_trans",
"code": "protected theorem Nat.lt_trans {n m k : Nat} (h₁ : LT.lt n m) : LT.lt m k → LT.lt n k",
"start": [
1681,
1
],
"end": [
1682,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_succ",
"code": "theorem Nat.le_succ (n : Nat) : LE.le n (succ n)",
"start": [
1684,
1
],
"end": [
1685,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_succ_of_le",
"code": "theorem Nat.le_succ_of_le {n m : Nat} (h : LE.le n m) : LE.le n (succ m)",
"start": [
1687,
1
],
"end": [
1688,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_refl",
"code": "protected theorem Nat.le_refl (n : Nat) : LE.le n n",
"start": [
1690,
1
],
"end": [
1691,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.succ_pos",
"code": "theorem Nat.succ_pos (n : Nat) : LT.lt 0 (succ n)",
"start": [
1693,
1
],
"end": [
1694,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.pred",
"code": "@[extern \"lean_nat_pred\"]\ndef Nat.pred : (@& Nat) → Nat\n | 0 => 0\n | succ a => a",
"start": [
1697,
1
],
"end": [
1706,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.pred_le_pred",
"code": "theorem Nat.pred_le_pred : {n m : Nat} → LE.le n m → LE.le (pred n) (pred m)",
"start": [
1708,
1
],
"end": [
1711,
64
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_of_succ_le_succ",
"code": "theorem Nat.le_of_succ_le_succ {n m : Nat} : LE.le (succ n) (succ m) → LE.le n m",
"start": [
1713,
1
],
"end": [
1714,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_of_lt_succ",
"code": "theorem Nat.le_of_lt_succ {m n : Nat} : LT.lt m (succ n) → LE.le m n",
"start": [
1716,
1
],
"end": [
1717,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.eq_or_lt_of_le",
"code": "protected theorem Nat.eq_or_lt_of_le : {n m: Nat} → LE.le n m → Or (Eq n m) (LT.lt n m)",
"start": [
1719,
1
],
"end": [
1727,
42
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.lt_or_ge",
"code": "protected theorem Nat.lt_or_ge (n m : Nat) : Or (LT.lt n m) (GE.ge n m)",
"start": [
1729,
1
],
"end": [
1738,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.not_succ_le_self",
"code": "theorem Nat.not_succ_le_self : (n : Nat) → Not (LE.le (succ n) n)",
"start": [
1740,
1
],
"end": [
1742,
74
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.lt_irrefl",
"code": "protected theorem Nat.lt_irrefl (n : Nat) : Not (LT.lt n n)",
"start": [
1744,
1
],
"end": [
1745,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.lt_of_le_of_lt",
"code": "protected theorem Nat.lt_of_le_of_lt {n m k : Nat} (h₁ : LE.le n m) (h₂ : LT.lt m k) : LT.lt n k",
"start": [
1747,
1
],
"end": [
1748,
40
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_antisymm",
"code": "protected theorem Nat.le_antisymm {n m : Nat} (h₁ : LE.le n m) (h₂ : LE.le m n) : Eq n m",
"start": [
1750,
1
],
"end": [
1753,
72
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.lt_of_le_of_ne",
"code": "protected theorem Nat.lt_of_le_of_ne {n m : Nat} (h₁ : LE.le n m) (h₂ : Not (Eq n m)) : LT.lt n m",
"start": [
1755,
1
],
"end": [
1758,
51
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_of_ble_eq_true",
"code": "theorem Nat.le_of_ble_eq_true (h : Eq (Nat.ble n m) true) : LE.le n m",
"start": [
1760,
1
],
"end": [
1763,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.ble_self_eq_true",
"code": "theorem Nat.ble_self_eq_true : (n : Nat) → Eq (Nat.ble n n) true",
"start": [
1765,
1
],
"end": [
1767,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.ble_succ_eq_true",
"code": "theorem Nat.ble_succ_eq_true : {n m : Nat} → Eq (Nat.ble n m) true → Eq (Nat.ble n (succ m)) true",
"start": [
1769,
1
],
"end": [
1771,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.ble_eq_true_of_le",
"code": "theorem Nat.ble_eq_true_of_le (h : LE.le n m) : Eq (Nat.ble n m) true",
"start": [
1773,
1
],
"end": [
1776,
64
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.not_le_of_not_ble_eq_true",
"code": "theorem Nat.not_le_of_not_ble_eq_true (h : Not (Eq (Nat.ble n m) true)) : Not (LE.le n m)",
"start": [
1778,
1
],
"end": [
1779,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.decLe",
"code": "@[extern \"lean_nat_dec_le\"]\ninstance Nat.decLe (n m : @& Nat) : Decidable (LE.le n m) :=\n dite (Eq (Nat.ble n m) true) (fun h => isTrue (Nat.le_of_ble_eq_true h)) (fun h => isFalse (Nat.not_le_of_not_ble_eq_true h))",
"start": [
1781,
1
],
"end": [
1783,
128
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.decLt",
"code": "@[extern \"lean_nat_dec_lt\"]\ninstance Nat.decLt (n m : @& Nat) : Decidable (LT.lt n m) :=\n decLe (succ n) m",
"start": [
1785,
1
],
"end": [
1787,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.sub",
"code": "@[extern \"lean_nat_sub\"]\nprotected def Nat.sub : (@& Nat) → (@& Nat) → Nat\n | a, 0 => a\n | a, succ b => pred (Nat.sub a b)",
"start": [
1792,
1
],
"end": [
1803,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "instSubNat",
"code": "instance instSubNat : Sub Nat where\n sub := Nat.sub",
"start": [
1805,
1
],
"end": [
1806,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "System.Platform.getNumBits",
"code": "@[extern \"lean_system_platform_nbits\"] opaque System.Platform.getNumBits : Unit → Subtype fun (n : Nat) => Or (Eq n 32) (Eq n 64) :=\n fun _ => ⟨64, Or.inr rfl⟩",
"start": [
1808,
1
],
"end": [
1817,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "System.Platform.numBits",
"code": "def System.Platform.numBits : Nat :=\n (getNumBits ()).val",
"start": [
1819,
1
],
"end": [
1821,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "System.Platform.numBits_eq",
"code": "theorem System.Platform.numBits_eq : Or (Eq numBits 32) (Eq numBits 64)",
"start": [
1823,
1
],
"end": [
1824,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Fin",
"code": "@[pp_using_anonymous_constructor]\nstructure Fin (n : Nat) where\n \n mk ::\n \n val : Nat\n \n isLt : LT.lt val n",
"start": [
1826,
1
],
"end": [
1838,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Fin.eq_of_val_eq",
"code": "theorem Fin.eq_of_val_eq {n} : ∀ {i j : Fin n}, Eq i.val j.val → Eq i j",
"start": [
1842,
1
],
"end": [
1843,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Fin.val_eq_of_eq",
"code": "theorem Fin.val_eq_of_eq {n} {i j : Fin n} (h : Eq i j) : Eq i.val j.val",
"start": [
1845,
1
],
"end": [
1846,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Fin.ne_of_val_ne",
"code": "theorem Fin.ne_of_val_ne {n} {i j : Fin n} (h : Not (Eq i.val j.val)) : Not (Eq i j)",
"start": [
1848,
1
],
"end": [
1849,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Fin.decLt",
"code": "instance Fin.decLt {n} (a b : Fin n) : Decidable (LT.lt a b) := Nat.decLt ..",
"start": [
1863,
1
],
"end": [
1863,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "Fin.decLe",
"code": "instance Fin.decLe {n} (a b : Fin n) : Decidable (LE.le a b) := Nat.decLe ..",
"start": [
1864,
1
],
"end": [
1864,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt8.size",
"code": "abbrev UInt8.size : Nat := 256",
"start": [
1866,
1
],
"end": [
1867,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt8",
"code": "structure UInt8 where\n \n val : Fin UInt8.size",
"start": [
1869,
1
],
"end": [
1876,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt8.ofNatCore",
"code": "@[extern \"lean_uint8_of_nat\"]\ndef UInt8.ofNatCore (n : @& Nat) (h : LT.lt n UInt8.size) : UInt8 where\n val := { val := n, isLt := h }",
"start": [
1881,
1
],
"end": [
1887,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt8.decEq",
"code": "@[extern \"lean_uint8_dec_eq\"]\ndef UInt8.decEq (a b : UInt8) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt8.noConfusion h' (fun h' => absurd h' h)))",
"start": [
1890,
1
],
"end": [
1898,
122
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt16.size",
"code": "abbrev UInt16.size : Nat := 65536",
"start": [
1905,
1
],
"end": [
1906,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt16",
"code": "structure UInt16 where\n \n val : Fin UInt16.size",
"start": [
1908,
1
],
"end": [
1915,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt16.ofNatCore",
"code": "@[extern \"lean_uint16_of_nat\"]\ndef UInt16.ofNatCore (n : @& Nat) (h : LT.lt n UInt16.size) : UInt16 where\n val := { val := n, isLt := h }",
"start": [
1920,
1
],
"end": [
1926,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt16.decEq",
"code": "@[extern \"lean_uint16_dec_eq\"]\ndef UInt16.decEq (a b : UInt16) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt16.noConfusion h' (fun h' => absurd h' h)))",
"start": [
1929,
1
],
"end": [
1937,
123
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32.size",
"code": "abbrev UInt32.size : Nat := 4294967296",
"start": [
1944,
1
],
"end": [
1945,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32",
"code": "structure UInt32 where\n \n val : Fin UInt32.size",
"start": [
1947,
1
],
"end": [
1954,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32.ofNatCore",
"code": "@[extern \"lean_uint32_of_nat\"]\ndef UInt32.ofNatCore (n : @& Nat) (h : LT.lt n UInt32.size) : UInt32 where\n val := { val := n, isLt := h }",
"start": [
1959,
1
],
"end": [
1965,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32.toNat",
"code": "@[extern \"lean_uint32_to_nat\"]\ndef UInt32.toNat (n : UInt32) : Nat := n.val.val",
"start": [
1967,
1
],
"end": [
1972,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32.decEq",
"code": "@[extern \"lean_uint32_dec_eq\"]\ndef UInt32.decEq (a b : UInt32) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt32.noConfusion h' (fun h' => absurd h' h)))",
"start": [
1975,
1
],
"end": [
1983,
123
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32.decLt",
"code": "@[extern \"lean_uint32_dec_lt\"]\ndef UInt32.decLt (a b : UInt32) : Decidable (LT.lt a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (LT.lt n m))",
"start": [
1997,
1
],
"end": [
2004,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32.decLe",
"code": "@[extern \"lean_uint32_dec_le\"]\ndef UInt32.decLe (a b : UInt32) : Decidable (LE.le a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ => inferInstanceAs (Decidable (LE.le n m))",
"start": [
2007,
1
],
"end": [
2014,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt64.size",
"code": "abbrev UInt64.size : Nat := 18446744073709551616",
"start": [
2021,
1
],
"end": [
2022,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt64",
"code": "structure UInt64 where\n \n val : Fin UInt64.size",
"start": [
2023,
1
],
"end": [
2030,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt64.ofNatCore",
"code": "@[extern \"lean_uint64_of_nat\"]\ndef UInt64.ofNatCore (n : @& Nat) (h : LT.lt n UInt64.size) : UInt64 where\n val := { val := n, isLt := h }",
"start": [
2035,
1
],
"end": [
2041,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt64.decEq",
"code": "@[extern \"lean_uint64_dec_eq\"]\ndef UInt64.decEq (a b : UInt64) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h => isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => UInt64.noConfusion h' (fun h' => absurd h' h)))",
"start": [
2044,
1
],
"end": [
2052,
123
],
"kind": "commanddeclaration"
},
{
"full_name": "USize.size",
"code": "abbrev USize.size : Nat := hAdd (hSub (hPow 2 System.Platform.numBits) 1) 1",
"start": [
2059,
1
],
"end": [
2078,
76
],
"kind": "commanddeclaration"
},
{
"full_name": "usize_size_eq",
"code": "theorem usize_size_eq : Or (Eq USize.size 4294967296) (Eq USize.size 18446744073709551616)",
"start": [
2080,
1
],
"end": [
2084,
40
],
"kind": "commanddeclaration"
},
{
"full_name": "USize",
"code": "structure USize where\n \n val : Fin USize.size",
"start": [
2086,
1
],
"end": [
2096,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "USize.ofNatCore",
"code": "@[extern \"lean_usize_of_nat\"]\ndef USize.ofNatCore (n : @& Nat) (h : LT.lt n USize.size) : USize := {\n val := { val := n, isLt := h }\n}",
"start": [
2101,
1
],
"end": [
2108,
2
],
"kind": "commanddeclaration"
},
{
"full_name": "USize.decEq",
"code": "@[extern \"lean_usize_dec_eq\"]\ndef USize.decEq (a b : USize) : Decidable (Eq a b) :=\n match a, b with\n | ⟨n⟩, ⟨m⟩ =>\n dite (Eq n m) (fun h =>isTrue (h ▸ rfl)) (fun h => isFalse (fun h' => USize.noConfusion h' (fun h' => absurd h' h)))",
"start": [
2111,
1
],
"end": [
2119,
121
],
"kind": "commanddeclaration"
},
{
"full_name": "USize.ofNat32",
"code": "@[extern \"lean_usize_of_nat\"]\ndef USize.ofNat32 (n : @& Nat) (h : LT.lt n 4294967296) : USize where\n val := {\n val := n\n isLt := match USize.size, usize_size_eq with\n | _, Or.inl rfl => h\n | _, Or.inr rfl => Nat.lt_trans h (by decide)\n }",
"start": [
2128,
1
],
"end": [
2140,
4
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.isValidChar",
"code": "abbrev Nat.isValidChar (n : Nat) : Prop :=\n Or (LT.lt n 0xd800) (And (LT.lt 0xdfff n) (LT.lt n 0x110000))",
"start": [
2142,
1
],
"end": [
2147,
64
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt32.isValidChar",
"code": "abbrev UInt32.isValidChar (n : UInt32) : Prop :=\n n.toNat.isValidChar",
"start": [
2149,
1
],
"end": [
2154,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "Char",
"code": "structure Char where\n \n val : UInt32\n \n valid : val.isValidChar",
"start": [
2156,
1
],
"end": [
2162,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "isValidChar_UInt32",
"code": "private theorem isValidChar_UInt32 {n : Nat} (h : n.isValidChar) : LT.lt n UInt32.size",
"start": [
2164,
1
],
"end": [
2167,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "Char.ofNatAux",
"code": "@[extern \"lean_uint32_of_nat\"]\ndef Char.ofNatAux (n : @& Nat) (h : n.isValidChar) : Char :=\n { val := ⟨{ val := n, isLt := isValidChar_UInt32 h }⟩, valid := h }",
"start": [
2169,
1
],
"end": [
2175,
70
],
"kind": "commanddeclaration"
},
{
"full_name": "Char.ofNat",
"code": "@[noinline, match_pattern]\ndef Char.ofNat (n : Nat) : Char :=\n dite (n.isValidChar)\n (fun h => Char.ofNatAux n h)\n (fun _ => { val := ⟨{ val := 0, isLt := by decide }⟩, valid := Or.inl (by decide) })",
"start": [
2177,
1
],
"end": [
2185,
89
],
"kind": "commanddeclaration"
},
{
"full_name": "Char.eq_of_val_eq",
"code": "theorem Char.eq_of_val_eq : ∀ {c d : Char}, Eq c.val d.val → Eq c d",
"start": [
2187,
1
],
"end": [
2188,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Char.val_eq_of_eq",
"code": "theorem Char.val_eq_of_eq : ∀ {c d : Char}, Eq c d → Eq c.val d.val",
"start": [
2190,
1
],
"end": [
2191,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Char.ne_of_val_ne",
"code": "theorem Char.ne_of_val_ne {c d : Char} (h : Not (Eq c.val d.val)) : Not (Eq c d)",
"start": [
2193,
1
],
"end": [
2194,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Char.val_ne_of_ne",
"code": "theorem Char.val_ne_of_ne {c d : Char} (h : Not (Eq c d)) : Not (Eq c.val d.val)",
"start": [
2196,
1
],
"end": [
2197,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Char.utf8Size",
"code": "def Char.utf8Size (c : Char) : Nat :=\n let v := c.val\n ite (LE.le v (UInt32.ofNatCore 0x7F (by decide))) 1\n (ite (LE.le v (UInt32.ofNatCore 0x7FF (by decide))) 2\n (ite (LE.le v (UInt32.ofNatCore 0xFFFF (by decide))) 3 4))",
"start": [
2205,
1
],
"end": [
2210,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "Option",
"code": "inductive Option (α : Type u) where\n \n | none : Option α\n \n | some (val : α) : Option α",
"start": [
2212,
1
],
"end": [
2244,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Option.getD",
"code": "@[macro_inline] def Option.getD (opt : Option α) (dflt : α) : α :=\n match opt with\n | some x => x\n | none => dflt",
"start": [
2253,
1
],
"end": [
2263,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Option.map",
"code": "@[inline] protected def Option.map (f : α → β) : Option α → Option β\n | some x => some (f x)\n | none => none",
"start": [
2265,
1
],
"end": [
2271,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "List",
"code": "inductive List (α : Type u) where\n \n | nil : List α\n \n | cons (head : α) (tail : List α) : List α",
"start": [
2273,
1
],
"end": [
2289,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "List.hasDecEq",
"code": "protected def List.hasDecEq {α : Type u} [DecidableEq α] : (a b : List α) → Decidable (Eq a b)\n | nil, nil => isTrue rfl\n | cons _ _, nil => isFalse (fun h => List.noConfusion h)\n | nil, cons _ _ => isFalse (fun h => List.noConfusion h)\n | cons a as, cons b bs =>\n match decEq a b with\n | isTrue hab =>\n match List.hasDecEq as bs with\n | isTrue habs => isTrue (hab ▸ habs ▸ rfl)\n | isFalse nabs => isFalse (fun h => List.noConfusion h (fun _ habs => absurd habs nabs))\n | isFalse nab => isFalse (fun h => List.noConfusion h (fun hab _ => absurd hab nab))",
"start": [
2294,
1
],
"end": [
2305,
89
],
"kind": "commanddeclaration"
},
{
"full_name": "List.length",
"code": "def List.length : List α → Nat\n | nil => 0\n | cons _ as => HAdd.hAdd (length as) 1",
"start": [
2309,
1
],
"end": [
2318,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "List.lengthTRAux",
"code": "def List.lengthTRAux : List α → Nat → Nat\n | nil, n => n\n | cons _ as, n => lengthTRAux as (Nat.succ n)",
"start": [
2320,
1
],
"end": [
2323,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "List.lengthTR",
"code": "def List.lengthTR (as : List α) : Nat :=\n lengthTRAux as 0",
"start": [
2325,
1
],
"end": [
2330,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "List.get",
"code": "def List.get {α : Type u} : (as : List α) → Fin as.length → α\n | cons a _, ⟨0, _⟩ => a\n | cons _ as, ⟨Nat.succ i, h⟩ => get as ⟨i, Nat.le_of_succ_le_succ h⟩",
"start": [
2332,
1
],
"end": [
2339,
71
],
"kind": "commanddeclaration"
},
{
"full_name": "List.set",
"code": "def List.set : List α → Nat → α → List α\n | cons _ as, 0, b => cons b as\n | cons a as, Nat.succ n, b => cons a (set as n b)\n | nil, _, _ => nil",
"start": [
2341,
1
],
"end": [
2348,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "List.foldl",
"code": "@[specialize]\ndef List.foldl {α : Type u} {β : Type v} (f : α → β → α) : (init : α) → List β → α\n | a, nil => a\n | a, cons b l => foldl f (f a b) l",
"start": [
2350,
1
],
"end": [
2357,
37
],
"kind": "commanddeclaration"
},
{
"full_name": "List.concat",
"code": "def List.concat {α : Type u} : List α → α → List α\n | nil, b => cons b nil\n | cons a as, b => cons a (concat as b)",
"start": [
2359,
1
],
"end": [
2362,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "String",
"code": "structure String where\n \n mk ::\n \n data : List Char",
"start": [
2364,
1
],
"end": [
2376,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "String.decEq",
"code": "@[extern \"lean_string_dec_eq\"]\ndef String.decEq (s₁ s₂ : @& String) : Decidable (Eq s₁ s₂) :=\n match s₁, s₂ with\n | ⟨s₁⟩, ⟨s₂⟩ =>\n dite (Eq s₁ s₂) (fun h => isTrue (congrArg _ h)) (fun h => isFalse (fun h' => String.noConfusion h' (fun h' => absurd h' h)))",
"start": [
2381,
1
],
"end": [
2389,
130
],
"kind": "commanddeclaration"
},
{
"full_name": "String.Pos",
"code": "structure String.Pos where\n \n byteIdx : Nat := 0",
"start": [
2393,
1
],
"end": [
2405,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Substring",
"code": "structure Substring where\n \n str : String\n \n startPos : String.Pos\n \n stopPos : String.Pos",
"start": [
2415,
1
],
"end": [
2427,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "Substring.bsize",
"code": "@[inline] def Substring.bsize : Substring → Nat\n | ⟨_, b, e⟩ => e.byteIdx.sub b.byteIdx",
"start": [
2432,
1
],
"end": [
2434,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "String.utf8ByteSize",
"code": "@[extern \"lean_string_utf8_byte_size\"]\ndef String.utf8ByteSize : (@& String) → Nat\n | ⟨s⟩ => go s\nwhere\n go : List Char → Nat\n | .nil => 0\n | .cons c cs => hAdd (go cs) c.utf8Size",
"start": [
2436,
1
],
"end": [
2446,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "String.endPos",
"code": "@[inline] def String.endPos (s : String) : String.Pos where\n byteIdx := utf8ByteSize s",
"start": [
2472,
1
],
"end": [
2474,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "String.toSubstring",
"code": "@[inline] def String.toSubstring (s : String) : Substring where\n str := s\n startPos := {}\n stopPos := s.endPos",
"start": [
2476,
1
],
"end": [
2480,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "String.toSubstring'",
"code": "def String.toSubstring' (s : String) : Substring :=\n s.toSubstring",
"start": [
2482,
1
],
"end": [
2484,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "unsafeCast",
"code": "unsafe def unsafeCast {α : Sort u} {β : Sort v} (a : α) : β :=\n PLift.down (ULift.down.{max u v} (cast lcProof (ULift.up.{max u v} (PLift.up a))))",
"start": [
2486,
1
],
"end": [
2511,
85
],
"kind": "commanddeclaration"
},
{
"full_name": "panicCore",
"code": "@[never_extract, extern \"lean_panic_fn\"]\ndef panicCore {α : Type u} [Inhabited α] (msg : String) : α := default",
"start": [
2514,
1
],
"end": [
2526,
71
],
"kind": "commanddeclaration"
},
{
"full_name": "panic",
"code": "@[noinline, never_extract]\ndef panic {α : Type u} [Inhabited α] (msg : String) : α :=\n panicCore msg",
"start": [
2528,
1
],
"end": [
2541,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "Array",
"code": "structure Array (α : Type u) where\n \n mk ::\n \n data : List α",
"start": [
2546,
1
],
"end": [
2571,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkEmpty",
"code": "@[extern \"lean_mk_empty_array_with_capacity\"]\ndef Array.mkEmpty {α : Type u} (c : @& Nat) : Array α where\n data := List.nil",
"start": [
2576,
1
],
"end": [
2579,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.empty",
"code": "def Array.empty {α : Type u} : Array α := mkEmpty 0",
"start": [
2581,
1
],
"end": [
2582,
52
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.size",
"code": "@[reducible, extern \"lean_array_get_size\"]\ndef Array.size {α : Type u} (a : @& Array α) : Nat :=\n a.data.length",
"start": [
2584,
1
],
"end": [
2587,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.get",
"code": "@[extern \"lean_array_fget\"]\ndef Array.get {α : Type u} (a : @& Array α) (i : @& Fin a.size) : α :=\n a.data.get i",
"start": [
2589,
1
],
"end": [
2592,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.getD",
"code": "@[inline] abbrev Array.getD (a : Array α) (i : Nat) (v₀ : α) : α :=\n dite (LT.lt i a.size) (fun h => a.get ⟨i, h⟩) (fun _ => v₀)",
"start": [
2594,
1
],
"end": [
2596,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.get!",
"code": "@[extern \"lean_array_get\"]\ndef Array.get! {α : Type u} [Inhabited α] (a : @& Array α) (i : @& Nat) : α :=\n Array.getD a i default",
"start": [
2598,
1
],
"end": [
2601,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.push",
"code": "@[extern \"lean_array_push\"]\ndef Array.push {α : Type u} (a : Array α) (v : α) : Array α where\n data := List.concat a.data v",
"start": [
2603,
1
],
"end": [
2609,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray0",
"code": "def Array.mkArray0 {α : Type u} : Array α :=\n mkEmpty 0",
"start": [
2611,
1
],
"end": [
2613,
12
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray1",
"code": "def Array.mkArray1 {α : Type u} (a₁ : α) : Array α :=\n (mkEmpty 1).push a₁",
"start": [
2615,
1
],
"end": [
2617,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray2",
"code": "def Array.mkArray2 {α : Type u} (a₁ a₂ : α) : Array α :=\n ((mkEmpty 2).push a₁).push a₂",
"start": [
2619,
1
],
"end": [
2621,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray3",
"code": "def Array.mkArray3 {α : Type u} (a₁ a₂ a₃ : α) : Array α :=\n (((mkEmpty 3).push a₁).push a₂).push a₃",
"start": [
2623,
1
],
"end": [
2625,
42
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray4",
"code": "def Array.mkArray4 {α : Type u} (a₁ a₂ a₃ a₄ : α) : Array α :=\n ((((mkEmpty 4).push a₁).push a₂).push a₃).push a₄",
"start": [
2627,
1
],
"end": [
2629,
52
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray5",
"code": "def Array.mkArray5 {α : Type u} (a₁ a₂ a₃ a₄ a₅ : α) : Array α :=\n (((((mkEmpty 5).push a₁).push a₂).push a₃).push a₄).push a₅",
"start": [
2631,
1
],
"end": [
2633,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray6",
"code": "def Array.mkArray6 {α : Type u} (a₁ a₂ a₃ a₄ a₅ a₆ : α) : Array α :=\n ((((((mkEmpty 6).push a₁).push a₂).push a₃).push a₄).push a₅).push a₆",
"start": [
2635,
1
],
"end": [
2637,
72
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray7",
"code": "def Array.mkArray7 {α : Type u} (a₁ a₂ a₃ a₄ a₅ a₆ a₇ : α) : Array α :=\n (((((((mkEmpty 7).push a₁).push a₂).push a₃).push a₄).push a₅).push a₆).push a₇",
"start": [
2639,
1
],
"end": [
2641,
82
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.mkArray8",
"code": "def Array.mkArray8 {α : Type u} (a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ : α) : Array α :=\n ((((((((mkEmpty 8).push a₁).push a₂).push a₃).push a₄).push a₅).push a₆).push a₇).push a₈",
"start": [
2643,
1
],
"end": [
2645,
92
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.set",
"code": "@[extern \"lean_array_fset\"]\ndef Array.set (a : Array α) (i : @& Fin a.size) (v : α) : Array α where\n data := a.data.set i.val v",
"start": [
2647,
1
],
"end": [
2655,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.setD",
"code": "@[inline] def Array.setD (a : Array α) (i : Nat) (v : α) : Array α :=\n dite (LT.lt i a.size) (fun h => a.set ⟨i, h⟩ v) (fun _ => a)",
"start": [
2657,
1
],
"end": [
2664,
63
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.set!",
"code": "@[extern \"lean_array_set\"]\ndef Array.set! (a : Array α) (i : @& Nat) (v : α) : Array α :=\n Array.setD a i v",
"start": [
2666,
1
],
"end": [
2674,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.appendCore",
"code": "protected def Array.appendCore {α : Type u} (as : Array α) (bs : Array α) : Array α :=\n let rec loop (i : Nat) (j : Nat) (as : Array α) : Array α :=\n dite (LT.lt j bs.size)\n (fun hlt =>\n match i with\n | 0 => as\n | Nat.succ i' => loop i' (hAdd j 1) (as.push (bs.get ⟨j, hlt⟩)))\n (fun _ => as)\n loop bs.size 0 as",
"start": [
2676,
1
],
"end": [
2685,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.extract",
"code": "def Array.extract (as : Array α) (start stop : Nat) : Array α :=\n let rec loop (i : Nat) (j : Nat) (bs : Array α) : Array α :=\n dite (LT.lt j as.size)\n (fun hlt =>\n match i with\n | 0 => bs\n | Nat.succ i' => loop i' (hAdd j 1) (bs.push (as.get ⟨j, hlt⟩)))\n (fun _ => bs)\n let sz' := Nat.sub (min stop as.size) start\n loop sz' start (mkEmpty sz')",
"start": [
2687,
1
],
"end": [
2701,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "List.toArrayAux",
"code": "@[inline_if_reduce]\ndef List.toArrayAux : List α → Array α → Array α\n | nil, r => r\n | cons a as, r => toArrayAux as (r.push a)",
"start": [
2703,
1
],
"end": [
2707,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "List.redLength",
"code": "@[inline_if_reduce]\ndef List.redLength : List α → Nat\n | nil => 0\n | cons _ as => as.redLength.succ",
"start": [
2709,
1
],
"end": [
2713,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "List.toArray",
"code": "@[inline, match_pattern, pp_nodot, export lean_list_to_array]\ndef List.toArray (as : List α) : Array α :=\n as.toArrayAux (Array.mkEmpty as.redLength)",
"start": [
2715,
1
],
"end": [
2720,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Bind",
"code": "class Bind (m : Type u → Type v) where\n \n bind : {α β : Type u} → m α → (α → m β) → m β",
"start": [
2722,
1
],
"end": [
2726,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "Pure",
"code": "class Pure (f : Type u → Type v) where\n \n pure {α : Type u} : α → f α",
"start": [
2730,
1
],
"end": [
2734,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Functor",
"code": "class Functor (f : Type u → Type v) : Type (max (u+1) v) where\n \n map : {α β : Type u} → (α → β) → f α → f β\n \n mapConst : {α β : Type u} → α → f β → f α := Function.comp map (Function.const _)",
"start": [
2738,
1
],
"end": [
2752,
84
],
"kind": "commanddeclaration"
},
{
"full_name": "Seq",
"code": "class Seq (f : Type u → Type v) : Type (max (u+1) v) where\n \n seq : {α β : Type u} → f (α → β) → (Unit → f α) → f β",
"start": [
2754,
1
],
"end": [
2762,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "SeqLeft",
"code": "class SeqLeft (f : Type u → Type v) : Type (max (u+1) v) where\n \n seqLeft : {α β : Type u} → f α → (Unit → f β) → f α",
"start": [
2764,
1
],
"end": [
2771,
54
],
"kind": "commanddeclaration"
},
{
"full_name": "SeqRight",
"code": "class SeqRight (f : Type u → Type v) : Type (max (u+1) v) where\n \n seqRight : {α β : Type u} → f α → (Unit → f β) → f β",
"start": [
2773,
1
],
"end": [
2780,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "Applicative",
"code": "class Applicative (f : Type u → Type v) extends Functor f, Pure f, Seq f, SeqLeft f, SeqRight f where\n map := fun x y => Seq.seq (pure x) fun _ => y\n seqLeft := fun a b => Seq.seq (Functor.map (Function.const _) a) b\n seqRight := fun a b => Seq.seq (Functor.map (Function.const _ id) a) b",
"start": [
2782,
1
],
"end": [
2797,
73
],
"kind": "commanddeclaration"
},
{
"full_name": "Monad",
"code": "class Monad (m : Type u → Type v) extends Applicative m, Bind m : Type (max (u+1) v) where\n map f x := bind x (Function.comp pure f)\n seq f x := bind f fun y => Functor.map y (x ())\n seqLeft x y := bind x fun a => bind (y ()) (fun _ => pure a)\n seqRight x y := bind x fun _ => y ()",
"start": [
2799,
1
],
"end": [
2818,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Array.sequenceMap",
"code": "def Array.sequenceMap {α : Type u} {β : Type v} {m : Type v → Type w} [Monad m] (as : Array α) (f : α → m β) : m (Array β) :=\n let rec loop (i : Nat) (j : Nat) (bs : Array β) : m (Array β) :=\n dite (LT.lt j as.size)\n (fun hlt =>\n match i with\n | 0 => pure bs\n | Nat.succ i' => Bind.bind (f (as.get ⟨j, hlt⟩)) fun b => loop i' (hAdd j 1) (bs.push b))\n (fun _ => pure bs)\n loop as.size 0 (Array.mkEmpty as.size)",
"start": [
2829,
1
],
"end": [
2838,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadLift",
"code": "class MonadLift (m : semiOutParam (Type u → Type v)) (n : Type u → Type w) where\n \n monadLift : {α : Type u} → m α → n α",
"start": [
2840,
1
],
"end": [
2850,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadLiftT",
"code": "class MonadLiftT (m : Type u → Type v) (n : Type u → Type w) where\n \n monadLift : {α : Type u} → m α → n α",
"start": [
2852,
1
],
"end": [
2861,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "liftM",
"code": "abbrev liftM := @monadLift",
"start": [
2865,
1
],
"end": [
2866,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadFunctor",
"code": "class MonadFunctor (m : semiOutParam (Type u → Type v)) (n : Type u → Type w) where\n \n monadMap {α : Type u} : ({β : Type u} → m β → m β) → n α → n α",
"start": [
2875,
1
],
"end": [
2886,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadFunctorT",
"code": "class MonadFunctorT (m : Type u → Type v) (n : Type u → Type w) where\n \n monadMap {α : Type u} : ({β : Type u} → m β → m β) → n α → n α",
"start": [
2888,
1
],
"end": [
2893,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "monadFunctorRefl",
"code": "instance monadFunctorRefl (m) : MonadFunctorT m m where\n monadMap f := f",
"start": [
2901,
1
],
"end": [
2902,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Except",
"code": "inductive Except (ε : Type u) (α : Type v) where\n \n | error : ε → Except ε α\n \n | ok : α → Except ε α",
"start": [
2904,
1
],
"end": [
2914,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadExceptOf",
"code": "class MonadExceptOf (ε : semiOutParam (Type u)) (m : Type v → Type w) where\n \n throw {α : Type v} : ε → m α\n \n tryCatch {α : Type v} (body : m α) (handler : ε → m α) : m α",
"start": [
2921,
1
],
"end": [
2943,
63
],
"kind": "commanddeclaration"
},
{
"full_name": "throwThe",
"code": "abbrev throwThe (ε : Type u) {m : Type v → Type w} [MonadExceptOf ε m] {α : Type v} (e : ε) : m α :=\n MonadExceptOf.throw e",
"start": [
2945,
1
],
"end": [
2950,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "tryCatchThe",
"code": "abbrev tryCatchThe (ε : Type u) {m : Type v → Type w} [MonadExceptOf ε m] {α : Type v} (x : m α) (handle : ε → m α) : m α :=\n MonadExceptOf.tryCatch x handle",
"start": [
2952,
1
],
"end": [
2957,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadExcept",
"code": "class MonadExcept (ε : outParam (Type u)) (m : Type v → Type w) where\n \n throw {α : Type v} : ε → m α\n \n tryCatch {α : Type v} : m α → (ε → m α) → m α",
"start": [
2959,
1
],
"end": [
2967,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadExcept.ofExcept",
"code": "def MonadExcept.ofExcept [Monad m] [MonadExcept ε m] : Except ε α → m α\n | .ok a => pure a\n | .error e => throw e",
"start": [
2969,
1
],
"end": [
2972,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadExcept.orElse",
"code": "@[inline] protected def orElse [MonadExcept ε m] {α : Type v} (t₁ : m α) (t₂ : Unit → m α) : m α :=\n tryCatch t₁ fun _ => t₂ ()",
"start": [
2983,
1
],
"end": [
2985,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "ReaderT",
"code": "def ReaderT (ρ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=\n ρ → m α",
"start": [
2992,
1
],
"end": [
2999,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "ReaderT.run",
"code": "@[always_inline, inline]\ndef ReaderT.run {ρ : Type u} {m : Type u → Type v} {α : Type u} (x : ReaderT ρ m α) (r : ρ) : m α :=\n x r",
"start": [
3004,
1
],
"end": [
3010,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "ReaderT.read",
"code": "@[always_inline, inline]\nprotected def read [Monad m] : ReaderT ρ m ρ :=\n pure",
"start": [
3030,
1
],
"end": [
3033,
7
],
"kind": "commanddeclaration"
},
{
"full_name": "ReaderT.pure",
"code": "@[always_inline, inline]\nprotected def pure [Monad m] {α} (a : α) : ReaderT ρ m α :=\n fun _ => pure a",
"start": [
3035,
1
],
"end": [
3038,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "ReaderT.bind",
"code": "@[always_inline, inline]\nprotected def bind [Monad m] {α β} (x : ReaderT ρ m α) (f : α → ReaderT ρ m β) : ReaderT ρ m β :=\n fun r => bind (x r) fun a => f a r",
"start": [
3040,
1
],
"end": [
3043,
37
],
"kind": "commanddeclaration"
},
{
"full_name": "ReaderT.adapt",
"code": "@[always_inline, inline]\nprotected def adapt {ρ' α : Type u} (f : ρ' → ρ) : ReaderT ρ m α → ReaderT ρ' m α :=\n fun x r => x (f r)",
"start": [
3063,
1
],
"end": [
3069,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadReaderOf",
"code": "class MonadReaderOf (ρ : semiOutParam (Type u)) (m : Type u → Type v) where\n \n read : m ρ",
"start": [
3074,
1
],
"end": [
3090,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "readThe",
"code": "@[always_inline, inline]\ndef readThe (ρ : Type u) {m : Type u → Type v} [MonadReaderOf ρ m] : m ρ :=\n MonadReaderOf.read",
"start": [
3092,
1
],
"end": [
3098,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadReader",
"code": "class MonadReader (ρ : outParam (Type u)) (m : Type u → Type v) where\n \n read : m ρ",
"start": [
3100,
1
],
"end": [
3103,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadWithReaderOf",
"code": "class MonadWithReaderOf (ρ : semiOutParam (Type u)) (m : Type u → Type v) where\n \n withReader {α : Type u} : (ρ → ρ) → m α → m α",
"start": [
3116,
1
],
"end": [
3126,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "withTheReader",
"code": "@[always_inline, inline]\ndef withTheReader (ρ : Type u) {m : Type u → Type v} [MonadWithReaderOf ρ m] {α : Type u} (f : ρ → ρ) (x : m α) : m α :=\n MonadWithReaderOf.withReader f x",
"start": [
3128,
1
],
"end": [
3134,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadWithReader",
"code": "class MonadWithReader (ρ : outParam (Type u)) (m : Type u → Type v) where\n \n withReader {α : Type u} : (ρ → ρ) → m α → m α",
"start": [
3136,
1
],
"end": [
3140,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadStateOf",
"code": "class MonadStateOf (σ : semiOutParam (Type u)) (m : Type u → Type v) where\n \n get : m σ\n \n set : σ → m PUnit\n \n modifyGet {α : Type u} : (σ → Prod α σ) → m α",
"start": [
3153,
1
],
"end": [
3170,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "getThe",
"code": "abbrev getThe (σ : Type u) {m : Type u → Type v} [MonadStateOf σ m] : m σ :=\n MonadStateOf.get",
"start": [
3174,
1
],
"end": [
3179,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "modifyThe",
"code": "@[always_inline, inline]\nabbrev modifyThe (σ : Type u) {m : Type u → Type v} [MonadStateOf σ m] (f : σ → σ) : m PUnit :=\n MonadStateOf.modifyGet fun s => (PUnit.unit, f s)",
"start": [
3181,
1
],
"end": [
3187,
52
],
"kind": "commanddeclaration"
},
{
"full_name": "modifyGetThe",
"code": "@[always_inline, inline]\nabbrev modifyGetThe {α : Type u} (σ : Type u) {m : Type u → Type v} [MonadStateOf σ m] (f : σ → Prod α σ) : m α :=\n MonadStateOf.modifyGet f",
"start": [
3189,
1
],
"end": [
3195,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "MonadState",
"code": "class MonadState (σ : outParam (Type u)) (m : Type u → Type v) where\n \n get : m σ\n \n set : σ → m PUnit\n \n modifyGet {α : Type u} : (σ → Prod α σ) → m α",
"start": [
3197,
1
],
"end": [
3209,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "modify",
"code": "@[always_inline, inline]\ndef modify {σ : Type u} {m : Type u → Type v} [MonadState σ m] (f : σ → σ) : m PUnit :=\n modifyGet fun s => (PUnit.unit, f s)",
"start": [
3218,
1
],
"end": [
3226,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "getModify",
"code": "@[always_inline, inline]\ndef getModify {σ : Type u} {m : Type u → Type v} [MonadState σ m] (f : σ → σ) : m σ :=\n modifyGet fun s => (s, f s)",
"start": [
3228,
1
],
"end": [
3234,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.Result",
"code": "inductive Result (ε σ α : Type u) where\n \n | ok : α → σ → Result ε σ α\n \n | error : ε → σ → Result ε σ α",
"start": [
3246,
1
],
"end": [
3254,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM",
"code": "def EStateM (ε σ α : Type u) := σ → Result ε σ α",
"start": [
3264,
1
],
"end": [
3268,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.pure",
"code": "@[always_inline, inline]\nprotected def pure (a : α) : EStateM ε σ α := fun s =>\n Result.ok a s",
"start": [
3277,
1
],
"end": [
3280,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.set",
"code": "@[always_inline, inline]\nprotected def set (s : σ) : EStateM ε σ PUnit := fun _ =>\n Result.ok ⟨⟩ s",
"start": [
3282,
1
],
"end": [
3285,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.get",
"code": "@[always_inline, inline]\nprotected def get : EStateM ε σ σ := fun s =>\n Result.ok s s",
"start": [
3287,
1
],
"end": [
3290,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.modifyGet",
"code": "@[always_inline, inline]\nprotected def modifyGet (f : σ → Prod α σ) : EStateM ε σ α := fun s =>\n match f s with\n | (a, s) => Result.ok a s",
"start": [
3292,
1
],
"end": [
3296,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.throw",
"code": "@[always_inline, inline]\nprotected def throw (e : ε) : EStateM ε σ α := fun s =>\n Result.error e s",
"start": [
3298,
1
],
"end": [
3301,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.Backtrackable",
"code": "class Backtrackable (δ : outParam (Type u)) (σ : Type u) where\n \n save : σ → δ\n \n restore : σ → δ → σ",
"start": [
3303,
1
],
"end": [
3313,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.tryCatch",
"code": "@[always_inline, inline]\nprotected def tryCatch {δ} [Backtrackable δ σ] {α} (x : EStateM ε σ α) (handle : ε → EStateM ε σ α) : EStateM ε σ α := fun s =>\n let d := Backtrackable.save s\n match x s with\n | Result.error e s => handle e (Backtrackable.restore s d)\n | ok => ok",
"start": [
3315,
1
],
"end": [
3321,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.orElse",
"code": "@[always_inline, inline]\nprotected def orElse {δ} [Backtrackable δ σ] (x₁ : EStateM ε σ α) (x₂ : Unit → EStateM ε σ α) : EStateM ε σ α := fun s =>\n let d := Backtrackable.save s;\n match x₁ s with\n | Result.error _ s => x₂ () (Backtrackable.restore s d)\n | ok => ok",
"start": [
3323,
1
],
"end": [
3329,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.adaptExcept",
"code": "@[always_inline, inline]\ndef adaptExcept {ε' : Type u} (f : ε → ε') (x : EStateM ε σ α) : EStateM ε' σ α := fun s =>\n match x s with\n | Result.error e s => Result.error (f e) s\n | Result.ok a s => Result.ok a s",
"start": [
3331,
1
],
"end": [
3336,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.bind",
"code": "@[always_inline, inline]\nprotected def bind (x : EStateM ε σ α) (f : α → EStateM ε σ β) : EStateM ε σ β := fun s =>\n match x s with\n | Result.ok a s => f a s\n | Result.error e s => Result.error e s",
"start": [
3338,
1
],
"end": [
3343,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.map",
"code": "@[always_inline, inline]\nprotected def map (f : α → β) (x : EStateM ε σ α) : EStateM ε σ β := fun s =>\n match x s with\n | Result.ok a s => Result.ok (f a) s\n | Result.error e s => Result.error e s",
"start": [
3345,
1
],
"end": [
3350,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.seqRight",
"code": "@[always_inline, inline]\nprotected def seqRight (x : EStateM ε σ α) (y : Unit → EStateM ε σ β) : EStateM ε σ β := fun s =>\n match x s with\n | Result.ok _ s => y () s\n | Result.error e s => Result.error e s",
"start": [
3352,
1
],
"end": [
3357,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.instMonad",
"code": "@[always_inline]\ninstance instMonad : Monad (EStateM ε σ) where\n bind := EStateM.bind\n pure := EStateM.pure\n map := EStateM.map\n seqRight := EStateM.seqRight",
"start": [
3359,
1
],
"end": [
3364,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.run",
"code": "@[always_inline, inline]\ndef run (x : EStateM ε σ α) (s : σ) : Result ε σ α := x s",
"start": [
3378,
1
],
"end": [
3380,
58
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.run'",
"code": "@[always_inline, inline]\ndef run' (x : EStateM ε σ α) (s : σ) : Option α :=\n match run x s with\n | Result.ok v _ => some v\n | Result.error .. => none",
"start": [
3382,
1
],
"end": [
3390,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.dummySave",
"code": "@[inline] def dummySave : σ → PUnit := fun _ => ⟨⟩",
"start": [
3392,
1
],
"end": [
3393,
51
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.dummyRestore",
"code": "@[inline] def dummyRestore : σ → PUnit → σ := fun s _ => s",
"start": [
3395,
1
],
"end": [
3396,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "EStateM.nonBacktrackable",
"code": "instance nonBacktrackable : Backtrackable PUnit σ where\n save := dummySave\n restore := dummyRestore",
"start": [
3398,
1
],
"end": [
3406,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Hashable",
"code": "class Hashable (α : Sort u) where\n \n hash : α → UInt64",
"start": [
3410,
1
],
"end": [
3413,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "UInt64.toUSize",
"code": "@[extern \"lean_uint64_to_usize\"]\nopaque UInt64.toUSize (u : UInt64) : USize",
"start": [
3417,
1
],
"end": [
3419,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "USize.toUInt64",
"code": "@[extern \"lean_usize_to_uint64\"]\ndef USize.toUInt64 (u : USize) : UInt64 where\n val := {\n val := u.val.val\n isLt :=\n let ⟨n, h⟩ := u\n show LT.lt n _ from\n match USize.size, usize_size_eq, h with\n | _, Or.inl rfl, h => Nat.lt_trans h (by decide)\n | _, Or.inr rfl, h => h\n }",
"start": [
3421,
1
],
"end": [
3436,
4
],
"kind": "commanddeclaration"
},
{
"full_name": "mixHash",
"code": "@[extern \"lean_uint64_mix_hash\"]\nopaque mixHash (u₁ u₂ : UInt64) : UInt64",
"start": [
3438,
1
],
"end": [
3440,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "String.hash",
"code": "@[extern \"lean_string_hash\"]\nprotected opaque String.hash (s : @& String) : UInt64",
"start": [
3445,
1
],
"end": [
3447,
54
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name",
"code": "inductive Name where\n \n | anonymous : Name\n \n | str (pre : Name) (str : String)\n \n | num (pre : Name) (i : Nat)\nwith\n \n @[computed_field] hash : Name → UInt64\n | .anonymous => .ofNatCore 1723 (by decide)\n | .str p s => mixHash p.hash s.hash\n | .num p v => mixHash p.hash (dite (LT.lt v UInt64.size) (fun h => UInt64.ofNatCore v h) (fun _ => UInt64.ofNatCore 17 (by decide)))",
"start": [
3454,
1
],
"end": [
3505,
137
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr",
"code": "@[export lean_name_mk_string]\nabbrev mkStr (p : Name) (s : String) : Name :=\n Name.str p s",
"start": [
3515,
1
],
"end": [
3520,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkNum",
"code": "@[export lean_name_mk_numeral]\nabbrev mkNum (p : Name) (v : Nat) : Name :=\n Name.num p v",
"start": [
3522,
1
],
"end": [
3527,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkSimple",
"code": "abbrev mkSimple (s : String) : Name :=\n .str .anonymous s",
"start": [
3529,
1
],
"end": [
3535,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr1",
"code": "@[reducible] def mkStr1 (s₁ : String) : Name :=\n .str .anonymous s₁",
"start": [
3537,
1
],
"end": [
3539,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr2",
"code": "@[reducible] def mkStr2 (s₁ s₂ : String) : Name :=\n .str (.str .anonymous s₁) s₂",
"start": [
3541,
1
],
"end": [
3543,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr3",
"code": "@[reducible] def mkStr3 (s₁ s₂ s₃ : String) : Name :=\n .str (.str (.str .anonymous s₁) s₂) s₃",
"start": [
3545,
1
],
"end": [
3547,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr4",
"code": "@[reducible] def mkStr4 (s₁ s₂ s₃ s₄ : String) : Name :=\n .str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄",
"start": [
3549,
1
],
"end": [
3551,
51
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr5",
"code": "@[reducible] def mkStr5 (s₁ s₂ s₃ s₄ s₅ : String) : Name :=\n .str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅",
"start": [
3553,
1
],
"end": [
3555,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr6",
"code": "@[reducible] def mkStr6 (s₁ s₂ s₃ s₄ s₅ s₆ : String) : Name :=\n .str (.str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅) s₆",
"start": [
3557,
1
],
"end": [
3559,
71
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr7",
"code": "@[reducible] def mkStr7 (s₁ s₂ s₃ s₄ s₅ s₆ s₇ : String) : Name :=\n .str (.str (.str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅) s₆) s₇",
"start": [
3561,
1
],
"end": [
3563,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.mkStr8",
"code": "@[reducible] def mkStr8 (s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈ : String) : Name :=\n .str (.str (.str (.str (.str (.str (.str (.str .anonymous s₁) s₂) s₃) s₄) s₅) s₆) s₇) s₈",
"start": [
3565,
1
],
"end": [
3567,
91
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.beq",
"code": "@[extern \"lean_name_eq\"]\nprotected def beq : (@& Name) → (@& Name) → Bool\n | anonymous, anonymous => true\n | str p₁ s₁, str p₂ s₂ => and (BEq.beq s₁ s₂) (Name.beq p₁ p₂)\n | num p₁ n₁, num p₂ n₂ => and (BEq.beq n₁ n₂) (Name.beq p₁ p₂)\n | _, _ => false",
"start": [
3569,
1
],
"end": [
3575,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.appendCore",
"code": "def appendCore : Name → Name → Name\n | n, .anonymous => n\n | n, .str p s => .str (appendCore n p) s\n | n, .num p d => .num (appendCore n p) d",
"start": [
3580,
1
],
"end": [
3587,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.SourceInfo",
"code": "inductive SourceInfo where\n \n | original (leading : Substring) (pos : String.Pos) (trailing : Substring) (endPos : String.Pos)\n \n | synthetic (pos : String.Pos) (endPos : String.Pos) (canonical := false)\n \n | protected none",
"start": [
3593,
1
],
"end": [
3626,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.SourceInfo.getPos?",
"code": "def getPos? (info : SourceInfo) (canonicalOnly := false) : Option String.Pos :=\n match info, canonicalOnly with\n | original (pos := pos) .., _\n | synthetic (pos := pos) (canonical := true) .., _\n | synthetic (pos := pos) .., false => some pos\n | _, _ => none",
"start": [
3632,
1
],
"end": [
3641,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.SourceInfo.getTailPos?",
"code": "def getTailPos? (info : SourceInfo) (canonicalOnly := false) : Option String.Pos :=\n match info, canonicalOnly with\n | original (endPos := endPos) .., _\n | synthetic (endPos := endPos) (canonical := true) .., _\n | synthetic (endPos := endPos) .., false => some endPos\n | _, _ => none",
"start": [
3643,
1
],
"end": [
3652,
51
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.SyntaxNodeKind",
"code": "abbrev SyntaxNodeKind := Name",
"start": [
3656,
1
],
"end": [
3663,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.Preresolved",
"code": "inductive Syntax.Preresolved where\n \n | namespace (ns : Name)\n \n | decl (n : Name) (fields : List String)",
"start": [
3667,
1
],
"end": [
3676,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax",
"code": "inductive Syntax where\n \n | missing : Syntax\n \n | node (info : SourceInfo) (kind : SyntaxNodeKind) (args : Array Syntax) : Syntax\n \n | atom (info : SourceInfo) (val : String) : Syntax\n \n | ident (info : SourceInfo) (rawVal : Substring) (val : Name) (preresolved : List Syntax.Preresolved) : Syntax",
"start": [
3678,
1
],
"end": [
3716,
114
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node1",
"code": "def Syntax.node1 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray1 a₁)",
"start": [
3718,
1
],
"end": [
3720,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node2",
"code": "def Syntax.node2 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray2 a₁ a₂)",
"start": [
3722,
1
],
"end": [
3724,
47
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node3",
"code": "def Syntax.node3 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray3 a₁ a₂ a₃)",
"start": [
3726,
1
],
"end": [
3728,
50
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node4",
"code": "def Syntax.node4 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray4 a₁ a₂ a₃ a₄)",
"start": [
3730,
1
],
"end": [
3732,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node5",
"code": "def Syntax.node5 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray5 a₁ a₂ a₃ a₄ a₅)",
"start": [
3734,
1
],
"end": [
3736,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node6",
"code": "def Syntax.node6 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ a₆ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray6 a₁ a₂ a₃ a₄ a₅ a₆)",
"start": [
3738,
1
],
"end": [
3740,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node7",
"code": "def Syntax.node7 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ a₆ a₇ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray7 a₁ a₂ a₃ a₄ a₅ a₆ a₇)",
"start": [
3742,
1
],
"end": [
3744,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.node8",
"code": "def Syntax.node8 (info : SourceInfo) (kind : SyntaxNodeKind) (a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ : Syntax) : Syntax :=\n Syntax.node info kind (Array.mkArray8 a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈)",
"start": [
3746,
1
],
"end": [
3748,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.SyntaxNodeKinds",
"code": "def SyntaxNodeKinds := List SyntaxNodeKind",
"start": [
3750,
1
],
"end": [
3751,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.TSyntax",
"code": "structure TSyntax (ks : SyntaxNodeKinds) where\n \n raw : Syntax",
"start": [
3753,
1
],
"end": [
3762,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.choiceKind",
"code": "abbrev choiceKind : SyntaxNodeKind := `choice",
"start": [
3772,
1
],
"end": [
3776,
46
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.nullKind",
"code": "abbrev nullKind : SyntaxNodeKind := `null",
"start": [
3778,
1
],
"end": [
3779,
42
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.groupKind",
"code": "abbrev groupKind : SyntaxNodeKind := `group",
"start": [
3781,
1
],
"end": [
3785,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.identKind",
"code": "abbrev identKind : SyntaxNodeKind := `ident",
"start": [
3787,
1
],
"end": [
3792,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.strLitKind",
"code": "abbrev strLitKind : SyntaxNodeKind := `str",
"start": [
3794,
1
],
"end": [
3795,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.charLitKind",
"code": "abbrev charLitKind : SyntaxNodeKind := `char",
"start": [
3797,
1
],
"end": [
3798,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.numLitKind",
"code": "abbrev numLitKind : SyntaxNodeKind := `num",
"start": [
3800,
1
],
"end": [
3801,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.scientificLitKind",
"code": "abbrev scientificLitKind : SyntaxNodeKind := `scientific",
"start": [
3803,
1
],
"end": [
3804,
57
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.nameLitKind",
"code": "abbrev nameLitKind : SyntaxNodeKind := `name",
"start": [
3806,
1
],
"end": [
3807,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.fieldIdxKind",
"code": "abbrev fieldIdxKind : SyntaxNodeKind := `fieldIdx",
"start": [
3809,
1
],
"end": [
3810,
50
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.hygieneInfoKind",
"code": "abbrev hygieneInfoKind : SyntaxNodeKind := `hygieneInfo",
"start": [
3812,
1
],
"end": [
3820,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.interpolatedStrLitKind",
"code": "abbrev interpolatedStrLitKind : SyntaxNodeKind := `interpolatedStrLitKind",
"start": [
3822,
1
],
"end": [
3826,
74
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.interpolatedStrKind",
"code": "abbrev interpolatedStrKind : SyntaxNodeKind := `interpolatedStrKind",
"start": [
3827,
1
],
"end": [
3831,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.mkNode",
"code": "@[inline] def mkNode (k : SyntaxNodeKind) (args : Array Syntax) : TSyntax (.cons k .nil) :=\n ⟨Syntax.node SourceInfo.none k args⟩",
"start": [
3833,
1
],
"end": [
3835,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.mkNullNode",
"code": "@[inline] def mkNullNode (args : Array Syntax := Array.empty) : Syntax :=\n mkNode nullKind args |>.raw",
"start": [
3837,
1
],
"end": [
3840,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getKind",
"code": "def getKind (stx : Syntax) : SyntaxNodeKind :=\n match stx with\n | Syntax.node _ k _ => k\n | Syntax.missing => `missing\n | Syntax.atom _ v => Name.mkSimple v\n | Syntax.ident .. => identKind",
"start": [
3844,
1
],
"end": [
3857,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.setKind",
"code": "def setKind (stx : Syntax) (k : SyntaxNodeKind) : Syntax :=\n match stx with\n | Syntax.node info _ args => Syntax.node info k args\n | _ => stx",
"start": [
3859,
1
],
"end": [
3866,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.isOfKind",
"code": "def isOfKind (stx : Syntax) (k : SyntaxNodeKind) : Bool :=\n beq stx.getKind k",
"start": [
3868,
1
],
"end": [
3870,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getArg",
"code": "def getArg (stx : Syntax) (i : Nat) : Syntax :=\n match stx with\n | Syntax.node _ _ args => args.getD i Syntax.missing\n | _ => Syntax.missing",
"start": [
3872,
1
],
"end": [
3879,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getArgs",
"code": "def getArgs (stx : Syntax) : Array Syntax :=\n match stx with\n | Syntax.node _ _ args => args\n | _ => Array.empty",
"start": [
3881,
1
],
"end": [
3885,
40
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getNumArgs",
"code": "def getNumArgs (stx : Syntax) : Nat :=\n match stx with\n | Syntax.node _ _ args => args.size\n | _ => 0",
"start": [
3887,
1
],
"end": [
3891,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getOptional?",
"code": "def getOptional? (stx : Syntax) : Option Syntax :=\n match stx with\n | Syntax.node _ k args => match and (beq k nullKind) (beq args.size 1) with\n | true => some (args.get! 0)\n | false => none\n | _ => none",
"start": [
3893,
1
],
"end": [
3902,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.isMissing",
"code": "def isMissing : Syntax → Bool\n | Syntax.missing => true\n | _ => false",
"start": [
3904,
1
],
"end": [
3907,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.isNodeOf",
"code": "def isNodeOf (stx : Syntax) (k : SyntaxNodeKind) (n : Nat) : Bool :=\n and (stx.isOfKind k) (beq stx.getNumArgs n)",
"start": [
3909,
1
],
"end": [
3911,
46
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.isIdent",
"code": "def isIdent : Syntax → Bool\n | ident .. => true\n | _ => false",
"start": [
3913,
1
],
"end": [
3916,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getId",
"code": "def getId : Syntax → Name\n | ident _ _ val _ => val\n | _ => Name.anonymous",
"start": [
3918,
1
],
"end": [
3921,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.setArgs",
"code": "def setArgs (stx : Syntax) (args : Array Syntax) : Syntax :=\n match stx with\n | node info k _ => node info k args\n | stx => stx",
"start": [
3923,
1
],
"end": [
3930,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.setArg",
"code": "def setArg (stx : Syntax) (i : Nat) (arg : Syntax) : Syntax :=\n match stx with\n | node info k args => node info k (args.setD i arg)\n | stx => stx",
"start": [
3932,
1
],
"end": [
3939,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getHeadInfo?",
"code": "partial def getHeadInfo? : Syntax → Option SourceInfo\n | atom info _ => some info\n | ident info .. => some info\n | node SourceInfo.none _ args =>\n let rec loop (i : Nat) : Option SourceInfo :=\n match decide (LT.lt i args.size) with\n | true => match getHeadInfo? (args.get! i) with\n | some info => some info\n | none => loop (hAdd i 1)\n | false => none\n loop 0\n | node info _ _ => some info\n | _ => none",
"start": [
3941,
1
],
"end": [
3954,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getHeadInfo",
"code": "partial def getHeadInfo (stx : Syntax) : SourceInfo :=\n match stx.getHeadInfo? with\n | some info => info\n | none => SourceInfo.none",
"start": [
3956,
1
],
"end": [
3960,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getPos?",
"code": "def getPos? (stx : Syntax) (canonicalOnly := false) : Option String.Pos :=\n stx.getHeadInfo.getPos? canonicalOnly",
"start": [
3962,
1
],
"end": [
3968,
40
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.getTailPos?",
"code": "partial def getTailPos? (stx : Syntax) (canonicalOnly := false) : Option String.Pos :=\n match stx, canonicalOnly with\n | atom (SourceInfo.original (endPos := pos) ..) .., _\n | atom (SourceInfo.synthetic (endPos := pos) (canonical := true) ..) _, _\n | atom (SourceInfo.synthetic (endPos := pos) ..) _, false\n | ident (SourceInfo.original (endPos := pos) ..) .., _\n | ident (SourceInfo.synthetic (endPos := pos) (canonical := true) ..) .., _\n | ident (SourceInfo.synthetic (endPos := pos) ..) .., false\n | node (SourceInfo.original (endPos := pos) ..) .., _\n | node (SourceInfo.synthetic (endPos := pos) (canonical := true) ..) .., _\n | node (SourceInfo.synthetic (endPos := pos) ..) .., false => some pos\n | node _ _ args, _ =>\n let rec loop (i : Nat) : Option String.Pos :=\n match decide (LT.lt i args.size) with\n | true => match getTailPos? (args.get! ((args.size.sub i).sub 1)) canonicalOnly with\n | some info => some info\n | none => loop (hAdd i 1)\n | false => none\n loop 0\n | _, _ => none",
"start": [
3971,
1
],
"end": [
3995,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.SepArray",
"code": "structure SepArray (sep : String) where\n \n elemsAndSeps : Array Syntax",
"start": [
3997,
1
],
"end": [
4004,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.TSepArray",
"code": "structure TSepArray (ks : SyntaxNodeKinds) (sep : String) where\n \n elemsAndSeps : Array Syntax",
"start": [
4006,
1
],
"end": [
4010,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.TSyntaxArray",
"code": "abbrev TSyntaxArray (ks : SyntaxNodeKinds) := Array (TSyntax ks)",
"start": [
4014,
1
],
"end": [
4015,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.TSyntaxArray.rawImpl",
"code": "unsafe def TSyntaxArray.rawImpl : TSyntaxArray ks → Array Syntax := unsafeCast",
"start": [
4017,
1
],
"end": [
4018,
79
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.TSyntaxArray.raw",
"code": "@[implemented_by TSyntaxArray.rawImpl]\nopaque TSyntaxArray.raw (as : TSyntaxArray ks) : Array Syntax := Array.empty",
"start": [
4020,
1
],
"end": [
4022,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.TSyntaxArray.mkImpl",
"code": "unsafe def TSyntaxArray.mkImpl : Array Syntax → TSyntaxArray ks := unsafeCast",
"start": [
4024,
1
],
"end": [
4025,
78
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.TSyntaxArray.mk",
"code": "@[implemented_by TSyntaxArray.mkImpl]\nopaque TSyntaxArray.mk (as : Array Syntax) : TSyntaxArray ks := Array.empty",
"start": [
4027,
1
],
"end": [
4029,
76
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.SourceInfo.fromRef",
"code": "def SourceInfo.fromRef (ref : Syntax) (canonical := false) : SourceInfo :=\n let noncanonical ref :=\n match ref.getPos?, ref.getTailPos? with\n | some pos, some tailPos => .synthetic pos tailPos\n | _, _ => .none\n match canonical with\n | true =>\n match ref.getPos? true, ref.getTailPos? true with\n | some pos, some tailPos => .synthetic pos tailPos true\n | _, _ => noncanonical ref\n | false => noncanonical ref",
"start": [
4031,
1
],
"end": [
4042,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.mkAtom",
"code": "def mkAtom (val : String) : Syntax :=\n Syntax.atom SourceInfo.none val",
"start": [
4044,
1
],
"end": [
4046,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.mkAtomFrom",
"code": "def mkAtomFrom (src : Syntax) (val : String) (canonical := false) : Syntax :=\n Syntax.atom (SourceInfo.fromRef src canonical) val",
"start": [
4048,
1
],
"end": [
4050,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.ParserDescr",
"code": "inductive ParserDescr where\n \n | const (name : Name)\n \n | unary (name : Name) (p : ParserDescr)\n \n | binary (name : Name) (p₁ p₂ : ParserDescr)\n \n | node (kind : SyntaxNodeKind) (prec : Nat) (p : ParserDescr)\n \n | trailingNode (kind : SyntaxNodeKind) (prec lhsPrec : Nat) (p : ParserDescr)\n \n | symbol (val : String)\n \n | nonReservedSymbol (val : String) (includeIdent : Bool)\n \n | cat (catName : Name) (rbp : Nat)\n \n | parser (declName : Name)\n \n | nodeWithAntiquot (name : String) (kind : SyntaxNodeKind) (p : ParserDescr)\n \n | sepBy (p : ParserDescr) (sep : String) (psep : ParserDescr) (allowTrailingSep : Bool := false)\n \n | sepBy1 (p : ParserDescr) (sep : String) (psep : ParserDescr) (allowTrailingSep : Bool := false)",
"start": [
4054,
1
],
"end": [
4100,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.TrailingParserDescr",
"code": "abbrev TrailingParserDescr := ParserDescr",
"start": [
4105,
1
],
"end": [
4111,
42
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MacroScope",
"code": "abbrev MacroScope := Nat",
"start": [
4119,
1
],
"end": [
4125,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.reservedMacroScope",
"code": "def reservedMacroScope := 0",
"start": [
4126,
1
],
"end": [
4127,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.firstFrontendMacroScope",
"code": "def firstFrontendMacroScope := hAdd reservedMacroScope 1",
"start": [
4128,
1
],
"end": [
4129,
57
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MonadRef",
"code": "class MonadRef (m : Type → Type) where\n \n getRef : m Syntax\n \n withRef {α} : Syntax → m α → m α",
"start": [
4131,
1
],
"end": [
4141,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.replaceRef",
"code": "def replaceRef (ref : Syntax) (oldRef : Syntax) : Syntax :=\n match ref.getPos? with\n | some _ => ref\n | _ => oldRef",
"start": [
4149,
1
],
"end": [
4156,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.withRef",
"code": "@[always_inline, inline]\ndef withRef [Monad m] [MonadRef m] {α} (ref : Syntax) (x : m α) : m α :=\n bind getRef fun oldRef =>\n let ref := replaceRef ref oldRef\n MonadRef.withRef ref x",
"start": [
4158,
1
],
"end": [
4167,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MonadQuotation",
"code": "class MonadQuotation (m : Type → Type) extends MonadRef m where\n \n getCurrMacroScope : m MacroScope\n \n getMainModule : m Name\n \n withFreshMacroScope {α : Type} : m α → m α",
"start": [
4169,
1
],
"end": [
4196,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MonadRef.mkInfoFromRefPos",
"code": "@[inline]\ndef MonadRef.mkInfoFromRefPos [Monad m] [MonadRef m] : m SourceInfo :=\n return SourceInfo.fromRef (← getRef)",
"start": [
4200,
1
],
"end": [
4203,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.hasMacroScopes",
"code": "def Name.hasMacroScopes : Name → Bool\n | str _ s => beq s \"_hyg\"\n | num p _ => hasMacroScopes p\n | _ => false",
"start": [
4231,
1
],
"end": [
4235,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.eraseMacroScopesAux",
"code": "private def eraseMacroScopesAux : Name → Name\n | .str p s => match beq s \"_@\" with\n | true => p\n | false => eraseMacroScopesAux p\n | .num p _ => eraseMacroScopesAux p\n | .anonymous => Name.anonymous",
"start": [
4237,
1
],
"end": [
4242,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.eraseMacroScopes",
"code": "@[export lean_erase_macro_scopes]\ndef Name.eraseMacroScopes (n : Name) : Name :=\n match n.hasMacroScopes with\n | true => eraseMacroScopesAux n\n | false => n",
"start": [
4244,
1
],
"end": [
4249,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.simpMacroScopesAux",
"code": "private def simpMacroScopesAux : Name → Name\n | .num p i => Name.mkNum (simpMacroScopesAux p) i\n | n => eraseMacroScopesAux n",
"start": [
4251,
1
],
"end": [
4253,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.simpMacroScopes",
"code": "@[export lean_simp_macro_scopes]\ndef Name.simpMacroScopes (n : Name) : Name :=\n match n.hasMacroScopes with\n | true => simpMacroScopesAux n\n | false => n",
"start": [
4255,
1
],
"end": [
4260,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MacroScopesView",
"code": "structure MacroScopesView where\n \n name : Name\n \n imported : Name\n \n mainModule : Name\n \n scopes : List MacroScope",
"start": [
4262,
1
],
"end": [
4279,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MacroScopesView.review",
"code": "def MacroScopesView.review (view : MacroScopesView) : Name :=\n match view.scopes with\n | List.nil => view.name\n | List.cons _ _ =>\n let base := (Name.mkStr (Name.appendCore (Name.appendCore (Name.mkStr view.name \"_@\") view.imported) view.mainModule) \"_hyg\")\n view.scopes.foldl Name.mkNum base",
"start": [
4284,
1
],
"end": [
4290,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.assembleParts",
"code": "private def assembleParts : List Name → Name → Name\n | .nil, acc => acc\n | .cons (.str _ s) ps, acc => assembleParts ps (Name.mkStr acc s)\n | .cons (.num _ n) ps, acc => assembleParts ps (Name.mkNum acc n)\n | _, _ => panic \"Error: unreachable @ assembleParts\"",
"start": [
4292,
1
],
"end": [
4296,
75
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.extractImported",
"code": "private def extractImported (scps : List MacroScope) (mainModule : Name) : Name → List Name → MacroScopesView\n | n@(Name.str p str), parts =>\n match beq str \"_@\" with\n | true => { name := p, mainModule := mainModule, imported := assembleParts parts Name.anonymous, scopes := scps }\n | false => extractImported scps mainModule p (List.cons n parts)\n | n@(Name.num p _), parts => extractImported scps mainModule p (List.cons n parts)\n | _, _ => panic \"Error: unreachable @ extractImported\"",
"start": [
4298,
1
],
"end": [
4304,
80
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.extractMainModule",
"code": "private def extractMainModule (scps : List MacroScope) : Name → List Name → MacroScopesView\n | n@(Name.str p str), parts =>\n match beq str \"_@\" with\n | true => { name := p, mainModule := assembleParts parts Name.anonymous, imported := Name.anonymous, scopes := scps }\n | false => extractMainModule scps p (List.cons n parts)\n | n@(Name.num _ _), acc => extractImported scps (assembleParts acc Name.anonymous) n List.nil\n | _, _ => panic \"Error: unreachable @ extractMainModule\"",
"start": [
4306,
1
],
"end": [
4312,
80
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.extractMacroScopesAux",
"code": "private def extractMacroScopesAux : Name → List MacroScope → MacroScopesView\n | Name.num p scp, acc => extractMacroScopesAux p (List.cons scp acc)\n | Name.str p _ , acc => extractMainModule acc p List.nil | _, _ => panic \"Error: unreachable @ extractMacroScopesAux\"",
"start": [
4314,
1
],
"end": [
4317,
80
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.extractMacroScopes",
"code": "def extractMacroScopes (n : Name) : MacroScopesView :=\n match n.hasMacroScopes with\n | true => extractMacroScopesAux n List.nil\n | false => { name := n, scopes := List.nil, imported := Name.anonymous, mainModule := Name.anonymous }",
"start": [
4319,
1
],
"end": [
4326,
105
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.addMacroScope",
"code": "def addMacroScope (mainModule : Name) (n : Name) (scp : MacroScope) : Name :=\n match n.hasMacroScopes with\n | true =>\n let view := extractMacroScopes n\n match beq view.mainModule mainModule with\n | true => Name.mkNum n scp\n | false =>\n { view with\n imported := view.scopes.foldl Name.mkNum (Name.appendCore view.imported view.mainModule)\n mainModule := mainModule\n scopes := List.cons scp List.nil\n }.review\n | false =>\n Name.mkNum (Name.mkStr (Name.appendCore (Name.mkStr n \"_@\") mainModule) \"_hyg\") scp",
"start": [
4328,
1
],
"end": [
4342,
88
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.append",
"code": "def Name.append (a b : Name) : Name :=\n match a.hasMacroScopes, b.hasMacroScopes with\n | true, true =>\n panic \"Error: invalid `Name.append`, both arguments have macro scopes, consider using `eraseMacroScopes`\"\n | true, false =>\n let view := extractMacroScopes a\n { view with name := appendCore view.name b }.review\n | false, true =>\n let view := extractMacroScopes b\n { view with name := appendCore a view.name }.review\n | false, false => appendCore a b",
"start": [
4344,
1
],
"end": [
4363,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MonadQuotation.addMacroScope",
"code": "@[inline] def MonadQuotation.addMacroScope {m : Type → Type} [MonadQuotation m] [Monad m] (n : Name) : m Name :=\n bind getMainModule fun mainModule =>\n bind getCurrMacroScope fun scp =>\n pure (Lean.addMacroScope mainModule n scp)",
"start": [
4368,
1
],
"end": [
4375,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.defaultMaxRecDepth",
"code": "def defaultMaxRecDepth := 512",
"start": [
4377,
1
],
"end": [
4378,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.maxRecDepthErrorMessage",
"code": "def maxRecDepthErrorMessage : String :=\n \"maximum recursion depth has been reached\\nuse `set_option maxRecDepth <num>` to increase limit\\nuse `set_option diagnostics true` to get diagnostic information\"",
"start": [
4380,
1
],
"end": [
4382,
164
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.matchesNull",
"code": "def matchesNull (stx : Syntax) (n : Nat) : Bool :=\n stx.isNodeOf nullKind n",
"start": [
4386,
1
],
"end": [
4388,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.matchesIdent",
"code": "def matchesIdent (stx : Syntax) (id : Name) : Bool :=\n and stx.isIdent (beq stx.getId.eraseMacroScopes id.eraseMacroScopes)",
"start": [
4390,
1
],
"end": [
4399,
71
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Syntax.matchesLit",
"code": "def matchesLit (stx : Syntax) (k : SyntaxNodeKind) (val : String) : Bool :=\n match stx with\n | Syntax.node _ k' args => and (beq k k') (match args.getD 0 Syntax.missing with\n | Syntax.atom _ val' => beq val val'\n | _ => false)\n | _ => false",
"start": [
4401,
1
],
"end": [
4407,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.MethodsRefPointed",
"code": "private opaque MethodsRefPointed : NonemptyType.{0}",
"start": [
4413,
1
],
"end": [
4414,
52
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.MethodsRef",
"code": "private def MethodsRef : Type := MethodsRefPointed.type",
"start": [
4416,
1
],
"end": [
4416,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.Context",
"code": "structure Context where\n \n methods : MethodsRef\n \n mainModule : Name\n \n currMacroScope : MacroScope\n \n currRecDepth : Nat := 0\n \n maxRecDepth : Nat := defaultMaxRecDepth\n \n ref : Syntax",
"start": [
4420,
1
],
"end": [
4434,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.Exception",
"code": "inductive Exception where\n \n | error : Syntax → String → Exception\n \n | unsupportedSyntax : Exception",
"start": [
4436,
1
],
"end": [
4443,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.State",
"code": "structure State where\n \n macroScope : MacroScope\n \n traceMsgs : List (Prod Name String) := List.nil\n deriving Inhabited",
"start": [
4445,
1
],
"end": [
4452,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.MacroM",
"code": "abbrev MacroM := ReaderT Macro.Context (EStateM Macro.Exception Macro.State)",
"start": [
4456,
1
],
"end": [
4466,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro",
"code": "abbrev Macro := Syntax → MacroM Syntax",
"start": [
4468,
1
],
"end": [
4473,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.addMacroScope",
"code": "def addMacroScope (n : Name) : MacroM Name :=\n bind read fun ctx =>\n pure (Lean.addMacroScope ctx.mainModule n ctx.currMacroScope)",
"start": [
4481,
1
],
"end": [
4484,
64
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.throwUnsupported",
"code": "def throwUnsupported {α} : MacroM α :=\n throw Exception.unsupportedSyntax",
"start": [
4486,
1
],
"end": [
4488,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.throwError",
"code": "def throwError {α} (msg : String) : MacroM α :=\n bind getRef fun ref =>\n throw (Exception.error ref msg)",
"start": [
4490,
1
],
"end": [
4496,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.throwErrorAt",
"code": "def throwErrorAt {α} (ref : Syntax) (msg : String) : MacroM α :=\n withRef ref (throwError msg)",
"start": [
4498,
1
],
"end": [
4500,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.withFreshMacroScope",
"code": "@[inline] protected def withFreshMacroScope {α} (x : MacroM α) : MacroM α :=\n bind (modifyGet (fun s => (s.macroScope, { s with macroScope := hAdd s.macroScope 1 }))) fun fresh =>\n withReader (fun ctx => { ctx with currMacroScope := fresh }) x",
"start": [
4502,
1
],
"end": [
4508,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.withIncRecDepth",
"code": "@[inline] def withIncRecDepth {α} (ref : Syntax) (x : MacroM α) : MacroM α :=\n bind read fun ctx =>\n match beq ctx.currRecDepth ctx.maxRecDepth with\n | true => throw (Exception.error ref maxRecDepthErrorMessage)\n | false => withReader (fun ctx => { ctx with currRecDepth := hAdd ctx.currRecDepth 1 }) x",
"start": [
4510,
1
],
"end": [
4515,
92
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.Methods",
"code": "structure Methods where\n \n expandMacro? : Syntax → MacroM (Option Syntax)\n \n getCurrNamespace : MacroM Name\n \n hasDecl : Name → MacroM Bool\n \n resolveNamespace : Name → MacroM (List Name)\n \n resolveGlobalName : Name → MacroM (List (Prod Name (List String)))\n deriving Inhabited",
"start": [
4522,
1
],
"end": [
4537,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.mkMethodsImp",
"code": "unsafe def mkMethodsImp (methods : Methods) : MethodsRef :=\n unsafeCast methods",
"start": [
4539,
1
],
"end": [
4541,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.mkMethods",
"code": "@[implemented_by mkMethodsImp]\nopaque mkMethods (methods : Methods) : MethodsRef",
"start": [
4543,
1
],
"end": [
4545,
50
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.getMethodsImp",
"code": "unsafe def getMethodsImp : MacroM Methods :=\n bind read fun ctx => pure (unsafeCast (ctx.methods))",
"start": [
4550,
1
],
"end": [
4552,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.getMethods",
"code": "@[implemented_by getMethodsImp] opaque getMethods : MacroM Methods",
"start": [
4554,
1
],
"end": [
4555,
67
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.expandMacro?",
"code": "def expandMacro? (stx : Syntax) : MacroM (Option Syntax) := do\n (← getMethods).expandMacro? stx",
"start": [
4557,
1
],
"end": [
4562,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.hasDecl",
"code": "def hasDecl (declName : Name) : MacroM Bool := do\n (← getMethods).hasDecl declName",
"start": [
4564,
1
],
"end": [
4566,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.getCurrNamespace",
"code": "def getCurrNamespace : MacroM Name := do\n (← getMethods).getCurrNamespace",
"start": [
4568,
1
],
"end": [
4570,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.resolveNamespace",
"code": "def resolveNamespace (n : Name) : MacroM (List Name) := do\n (← getMethods).resolveNamespace n",
"start": [
4572,
3
],
"end": [
4574,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.resolveGlobalName",
"code": "def resolveGlobalName (n : Name) : MacroM (List (Prod Name (List String))) := do\n (← getMethods).resolveGlobalName n",
"start": [
4576,
1
],
"end": [
4588,
37
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Macro.trace",
"code": "def trace (clsName : Name) (msg : String) : MacroM Unit := do\n modify fun s => { s with traceMsgs := List.cons (Prod.mk clsName msg) s.traceMsgs }",
"start": [
4590,
1
],
"end": [
4592,
86
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.PrettyPrinter.UnexpandM",
"code": "abbrev UnexpandM := ReaderT Syntax (EStateM Unit Unit)",
"start": [
4600,
1
],
"end": [
4604,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.PrettyPrinter.Unexpander",
"code": "abbrev Unexpander := Syntax → UnexpandM Syntax",
"start": [
4606,
1
],
"end": [
4612,
47
],
"kind": "commanddeclaration"
}
] |
.lake/packages/lean4/src/lean/Init/Coe.lean | [
".lake/packages/lean4/src/lean/Init/Prelude.lean"
] | [
{
"full_name": "Coe",
"code": "class Coe (α : semiOutParam (Sort u)) (β : Sort v) where\n \n coe : α → β",
"start": [
120,
1
],
"end": [
129,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeTC",
"code": "class CoeTC (α : Sort u) (β : Sort v) where\n \n coe : α → β",
"start": [
132,
1
],
"end": [
139,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeOut",
"code": "class CoeOut (α : Sort u) (β : semiOutParam (Sort v)) where\n \n coe : α → β",
"start": [
146,
1
],
"end": [
152,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeOTC",
"code": "class CoeOTC (α : Sort u) (β : Sort v) where\n \n coe : α → β",
"start": [
155,
1
],
"end": [
162,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeHead",
"code": "class CoeHead (α : Sort u) (β : semiOutParam (Sort v)) where\n \n coe : α → β",
"start": [
173,
1
],
"end": [
180,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeHTC",
"code": "class CoeHTC (α : Sort u) (β : Sort v) where\n \n coe : α → β",
"start": [
183,
1
],
"end": [
190,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeTail",
"code": "class CoeTail (α : semiOutParam (Sort u)) (β : Sort v) where\n \n coe : α → β",
"start": [
197,
1
],
"end": [
205,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeHTCT",
"code": "class CoeHTCT (α : Sort u) (β : Sort v) where\n \n coe : α → β",
"start": [
208,
1
],
"end": [
215,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeDep",
"code": "class CoeDep (α : Sort u) (_ : α) (β : Sort v) where\n \n coe : β",
"start": [
222,
1
],
"end": [
234,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeT",
"code": "class CoeT (α : Sort u) (_ : α) (β : Sort v) where\n \n coe : β",
"start": [
237,
1
],
"end": [
248,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeFun",
"code": "class CoeFun (α : Sort u) (γ : outParam (α → Sort v)) where\n \n coe : (f : α) → γ f",
"start": [
255,
1
],
"end": [
266,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "CoeSort",
"code": "class CoeSort (α : Sort u) (β : outParam (Sort v)) where\n \n coe : α → β",
"start": [
271,
1
],
"end": [
279,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "boolToProp",
"code": "instance boolToProp : Coe Bool Prop where\n coe b := Eq b true",
"start": [
301,
1
],
"end": [
302,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "boolToSort",
"code": "instance boolToSort : CoeSort Bool Prop where\n coe b := b",
"start": [
304,
1
],
"end": [
305,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "decPropToBool",
"code": "instance decPropToBool (p : Prop) [Decidable p] : CoeDep Prop p Bool where\n coe := decide p",
"start": [
307,
1
],
"end": [
308,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "optionCoe",
"code": "instance optionCoe {α : Type u} : Coe α (Option α) where\n coe := some",
"start": [
310,
1
],
"end": [
311,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "subtypeCoe",
"code": "instance subtypeCoe {α : Sort u} {p : α → Prop} : CoeOut (Subtype p) α where\n coe v := v.val",
"start": [
313,
1
],
"end": [
314,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Internal.liftCoeM",
"code": "@[coe_decl] abbrev Lean.Internal.liftCoeM {m : Type u → Type v} {n : Type u → Type w} {α β : Type u}\n [MonadLiftT m n] [∀ a, CoeT α a β] [Monad n] (x : m α) : n β := do\n let a ← liftM x\n pure (CoeT.coe a)",
"start": [
318,
1
],
"end": [
327,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Internal.coeM",
"code": "@[coe_decl] abbrev Lean.Internal.coeM {m : Type u → Type v} {α β : Type u}\n [∀ a, CoeT α a β] [Monad m] (x : m α) : m β := do\n let a ← x\n pure (CoeT.coe a)",
"start": [
329,
1
],
"end": [
337,
20
],
"kind": "commanddeclaration"
}
] |
.lake/packages/lean4/src/lean/Init/Notation.lean | [
".lake/packages/lean4/src/lean/Init/Coe.lean",
".lake/packages/lean4/src/lean/Init/Prelude.lean"
] | [
{
"full_name": "Lean.Parser.Category",
"code": "structure Parser.Category",
"start": [
15,
1
],
"end": [
19,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.command",
"code": "def command : Category := {}",
"start": [
23,
1
],
"end": [
28,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.term",
"code": "def term : Category := {}",
"start": [
30,
1
],
"end": [
35,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.tactic",
"code": "def tactic : Category := {}",
"start": [
37,
1
],
"end": [
45,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.doElem",
"code": "def doElem : Category := {}",
"start": [
47,
1
],
"end": [
49,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.level",
"code": "def level : Category := {}",
"start": [
51,
1
],
"end": [
54,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.attr",
"code": "def attr : Category := {}",
"start": [
56,
1
],
"end": [
58,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.stx",
"code": "def stx : Category := {}",
"start": [
60,
1
],
"end": [
62,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.prio",
"code": "def prio : Category := {}",
"start": [
64,
1
],
"end": [
70,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Category.prec",
"code": "def prec : Category := {}",
"start": [
72,
1
],
"end": [
81,
26
],
"kind": "commanddeclaration"
}
] |
.lake/packages/lean4/src/lean/Init/Tactics.lean | [
".lake/packages/lean4/src/lean/Init/Notation.lean"
] | [
{
"full_name": "Lean.Parser.Tactic.simpArg",
"code": "def simpArg := simpStar.binary `orelse (simpErase.binary `orelse simpLemma)",
"start": [
588,
1
],
"end": [
592,
76
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Parser.Tactic.dsimpArg",
"code": "def dsimpArg := simpErase.binary `orelse simpLemma",
"start": [
597,
1
],
"end": [
601,
51
],
"kind": "commanddeclaration"
},
{
"full_name": "autoParam",
"code": "abbrev autoParam.{u} (α : Sort u) (tactic : Lean.Syntax) : Sort u := α",
"start": [
1609,
1
],
"end": [
1614,
71
],
"kind": "commanddeclaration"
}
] |
.lake/packages/lean4/src/lean/Init/SizeOf.lean | [
".lake/packages/lean4/src/lean/Init/Tactics.lean"
] | [
{
"full_name": "SizeOf",
"code": "class SizeOf (α : Sort u) where\n \n sizeOf : α → Nat",
"start": [
12,
1
],
"end": [
28,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "default.sizeOf",
"code": "protected def default.sizeOf (α : Sort u) : α → Nat\n | _ => 0",
"start": [
37,
1
],
"end": [
42,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "sizeOf_default",
"code": "@[simp] theorem sizeOf_default (n : α) : sizeOf n = 0",
"start": [
47,
1
],
"end": [
47,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "sizeOf_nat",
"code": "@[simp] theorem sizeOf_nat (n : Nat) : sizeOf n = n",
"start": [
52,
1
],
"end": [
52,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "sizeOf_thunk",
"code": "@[simp] theorem sizeOf_thunk [SizeOf α] (f : Unit → α) : sizeOf f = sizeOf (f ())",
"start": [
57,
1
],
"end": [
58,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "Unit.sizeOf",
"code": "@[simp] theorem Unit.sizeOf (u : Unit) : sizeOf u = 1",
"start": [
85,
1
],
"end": [
85,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.sizeOf_eq_one",
"code": "@[simp] theorem Bool.sizeOf_eq_one (b : Bool) : sizeOf b = 1",
"start": [
86,
1
],
"end": [
86,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.sizeOf",
"code": "protected noncomputable def Name.sizeOf : Name → Nat\n | anonymous => 1\n | str p s => 1 + Name.sizeOf p + sizeOf s\n | num p n => 1 + Name.sizeOf p + sizeOf n",
"start": [
90,
1
],
"end": [
97,
46
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.anonymous.sizeOf_spec",
"code": "@[simp] theorem Name.anonymous.sizeOf_spec : sizeOf anonymous = 1",
"start": [
102,
1
],
"end": [
103,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.str.sizeOf_spec",
"code": "@[simp] theorem Name.str.sizeOf_spec (p : Name) (s : String) : sizeOf (str p s) = 1 + sizeOf p + sizeOf s",
"start": [
104,
1
],
"end": [
105,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.Name.num.sizeOf_spec",
"code": "@[simp] theorem Name.num.sizeOf_spec (p : Name) (n : Nat) : sizeOf (num p n) = 1 + sizeOf p + sizeOf n",
"start": [
106,
1
],
"end": [
107,
6
],
"kind": "commanddeclaration"
}
] |
.lake/packages/lean4/src/lean/Init/Core.lean | [
".lake/packages/lean4/src/lean/Init/Prelude.lean",
".lake/packages/lean4/src/lean/Init/SizeOf.lean"
] | [
{
"full_name": "inline",
"code": "@[simp] def inline {α : Sort u} (a : α) : α := a",
"start": [
15,
1
],
"end": [
20,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "id_def",
"code": "theorem id_def {α : Sort u} (a : α) : id a = a",
"start": [
22,
1
],
"end": [
22,
54
],
"kind": "commanddeclaration"
},
{
"full_name": "flip",
"code": "@[inline] def flip {α : Sort u} {β : Sort v} {φ : Sort w} (f : α → β → φ) : β → α → φ :=\n fun b a => f a b",
"start": [
24,
1
],
"end": [
31,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Function.const_apply",
"code": "@[simp] theorem Function.const_apply {y : β} {x : α} : const α y x = y",
"start": [
33,
1
],
"end": [
33,
78
],
"kind": "commanddeclaration"
},
{
"full_name": "Function.comp_apply",
"code": "@[simp] theorem Function.comp_apply {f : β → δ} {g : α → β} {x : α} : comp f g x = f (g x)",
"start": [
35,
1
],
"end": [
35,
98
],
"kind": "commanddeclaration"
},
{
"full_name": "Function.comp_def",
"code": "theorem Function.comp_def {α β δ} (f : β → δ) (g : α → β) : f ∘ g = fun x => f (g x)",
"start": [
37,
1
],
"end": [
37,
92
],
"kind": "commanddeclaration"
},
{
"full_name": "Empty.elim",
"code": "@[macro_inline] def Empty.elim {C : Sort u} : Empty → C := Empty.rec",
"start": [
41,
1
],
"end": [
47,
69
],
"kind": "commanddeclaration"
},
{
"full_name": "PEmpty.elim",
"code": "@[macro_inline] def PEmpty.elim {C : Sort _} : PEmpty → C := fun a => nomatch a",
"start": [
52,
1
],
"end": [
58,
80
],
"kind": "commanddeclaration"
},
{
"full_name": "Thunk",
"code": "structure Thunk (α : Type u) : Type u where\n \n mk ::\n \n private fn : Unit → α",
"start": [
63,
1
],
"end": [
72,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "Thunk.pure",
"code": "@[extern \"lean_thunk_pure\"] protected def Thunk.pure (a : α) : Thunk α :=\n ⟨fun _ => a⟩",
"start": [
76,
1
],
"end": [
78,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Thunk.get",
"code": "@[extern \"lean_thunk_get_own\"] protected def Thunk.get (x : @& Thunk α) : α :=\n x.fn ()",
"start": [
80,
1
],
"end": [
87,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Thunk.map",
"code": "@[inline] protected def Thunk.map (f : α → β) (x : Thunk α) : Thunk β :=\n ⟨fun _ => f x.get⟩",
"start": [
89,
1
],
"end": [
91,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Thunk.bind",
"code": "@[inline] protected def Thunk.bind (x : Thunk α) (f : α → Thunk β) : Thunk β :=\n ⟨fun _ => (f x.get).get⟩",
"start": [
92,
1
],
"end": [
94,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Thunk.sizeOf_eq",
"code": "@[simp] theorem Thunk.sizeOf_eq [SizeOf α] (a : Thunk α) : sizeOf a = 1 + sizeOf a.get",
"start": [
96,
1
],
"end": [
97,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "thunkCoe",
"code": "instance thunkCoe : CoeTail α (Thunk α) where\n coe a := ⟨fun _ => a⟩",
"start": [
99,
1
],
"end": [
101,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.ndrecOn",
"code": "abbrev Eq.ndrecOn.{u1, u2} {α : Sort u2} {a : α} {motive : α → Sort u1} {b : α} (h : a = b) (m : motive a) : motive b :=\n Eq.ndrec m h",
"start": [
103,
1
],
"end": [
105,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff",
"code": "structure Iff (a b : Prop) : Prop where\n \n intro ::\n \n mp : a → b\n \n mpr : b → a",
"start": [
109,
1
],
"end": [
120,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "Sum",
"code": "inductive Sum (α : Type u) (β : Type v) where\n \n | inl (val : α) : Sum α β\n \n | inr (val : β) : Sum α β",
"start": [
125,
1
],
"end": [
134,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "PSum",
"code": "inductive PSum (α : Sort u) (β : Sort v) where\n \n | inl (val : α) : PSum α β\n \n | inr (val : β) : PSum α β",
"start": [
138,
1
],
"end": [
153,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Sigma",
"code": "@[pp_using_anonymous_constructor]\nstructure Sigma {α : Type u} (β : α → Type v) where\n \n mk ::\n \n fst : α\n \n snd : β fst",
"start": [
161,
1
],
"end": [
177,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "PSigma",
"code": "@[pp_using_anonymous_constructor]\nstructure PSigma {α : Sort u} (β : α → Sort v) where\n \n mk ::\n \n fst : α\n \n snd : β fst",
"start": [
181,
1
],
"end": [
203,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "Exists",
"code": "inductive Exists {α : Sort u} (p : α → Prop) : Prop where\n \n | intro (w : α) (h : p w) : Exists p",
"start": [
205,
1
],
"end": [
233,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "ForInStep",
"code": "inductive ForInStep (α : Type u) where\n \n | done : α → ForInStep α\n \n | yield : α → ForInStep α\n deriving Inhabited",
"start": [
235,
1
],
"end": [
253,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "ForIn",
"code": "class ForIn (m : Type u₁ → Type u₂) (ρ : Type u) (α : outParam (Type v)) where\n \n forIn {β} [Monad m] (x : ρ) (b : β) (f : α → β → m (ForInStep β)) : m β",
"start": [
255,
1
],
"end": [
282,
74
],
"kind": "commanddeclaration"
},
{
"full_name": "ForIn'",
"code": "class ForIn' (m : Type u₁ → Type u₂) (ρ : Type u) (α : outParam (Type v)) (d : outParam $ Membership α ρ) where\n \n forIn' {β} [Monad m] (x : ρ) (b : β) (f : (a : α) → a ∈ x → β → m (ForInStep β)) : m β",
"start": [
286,
1
],
"end": [
298,
89
],
"kind": "commanddeclaration"
},
{
"full_name": "DoResultPRBC",
"code": "inductive DoResultPRBC (α β σ : Type u) where\n \n | pure : α → σ → DoResultPRBC α β σ\n \n | return : β → σ → DoResultPRBC α β σ\n \n | break : σ → DoResultPRBC α β σ\n \n | continue : σ → DoResultPRBC α β σ",
"start": [
303,
1
],
"end": [
326,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "DoResultPR",
"code": "inductive DoResultPR (α β σ : Type u) where\n \n | pure : α → σ → DoResultPR α β σ\n \n | return : β → σ → DoResultPR α β σ",
"start": [
328,
1
],
"end": [
337,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "DoResultBC",
"code": "inductive DoResultBC (σ : Type u) where\n \n | break : σ → DoResultBC σ\n \n | continue : σ → DoResultBC σ",
"start": [
339,
1
],
"end": [
350,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "DoResultSBC",
"code": "inductive DoResultSBC (α σ : Type u) where\n \n | pureReturn : α → σ → DoResultSBC α σ\n \n | break : σ → DoResultSBC α σ\n \n | continue : σ → DoResultSBC α σ",
"start": [
352,
1
],
"end": [
369,
37
],
"kind": "commanddeclaration"
},
{
"full_name": "HasEquiv",
"code": "class HasEquiv (α : Sort u) where\n \n Equiv : α → α → Sort v",
"start": [
371,
1
],
"end": [
375,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "HasSubset",
"code": "class HasSubset (α : Type u) where\n \n Subset : α → α → Prop",
"start": [
381,
1
],
"end": [
384,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "HasSSubset",
"code": "class HasSSubset (α : Type u) where\n \n SSubset : α → α → Prop",
"start": [
387,
1
],
"end": [
390,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Superset",
"code": "abbrev Superset [HasSubset α] (a b : α) := Subset b a",
"start": [
393,
1
],
"end": [
394,
54
],
"kind": "commanddeclaration"
},
{
"full_name": "SSuperset",
"code": "abbrev SSuperset [HasSSubset α] (a b : α) := SSubset b a",
"start": [
396,
1
],
"end": [
397,
57
],
"kind": "commanddeclaration"
},
{
"full_name": "Union",
"code": "class Union (α : Type u) where\n \n union : α → α → α",
"start": [
399,
1
],
"end": [
402,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Inter",
"code": "class Inter (α : Type u) where\n \n inter : α → α → α",
"start": [
404,
1
],
"end": [
407,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "SDiff",
"code": "class SDiff (α : Type u) where\n \n sdiff : α → α → α",
"start": [
409,
1
],
"end": [
415,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "EmptyCollection",
"code": "class EmptyCollection (α : Type u) where\n \n emptyCollection : α",
"start": [
443,
1
],
"end": [
447,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "Insert",
"code": "class Insert (α : outParam <| Type u) (γ : Type v) where\n \n insert : α → γ → γ",
"start": [
452,
1
],
"end": [
458,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Singleton",
"code": "class Singleton (α : outParam <| Type u) (β : Type v) where\n \n singleton : α → β",
"start": [
461,
1
],
"end": [
467,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "LawfulSingleton",
"code": "class LawfulSingleton (α : Type u) (β : Type v) [EmptyCollection β] [Insert α β] [Singleton α β] :\n Prop where\n \n insert_emptyc_eq (x : α) : (insert x ∅ : β) = singleton x",
"start": [
470,
1
],
"end": [
474,
60
],
"kind": "commanddeclaration"
},
{
"full_name": "Sep",
"code": "class Sep (α : outParam <| Type u) (γ : Type v) where\n \n sep : (α → Prop) → γ → γ",
"start": [
477,
1
],
"end": [
480,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Task",
"code": "structure Task (α : Type u) : Type u where\n \n pure ::\n \n get : α\n deriving Inhabited, Nonempty",
"start": [
482,
1
],
"end": [
496,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Task.Priority",
"code": "abbrev Priority := Nat",
"start": [
502,
1
],
"end": [
503,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "Task.Priority.default",
"code": "def Priority.default : Priority := 0",
"start": [
505,
1
],
"end": [
506,
37
],
"kind": "commanddeclaration"
},
{
"full_name": "Task.Priority.max",
"code": "def Priority.max : Priority := 8",
"start": [
507,
1
],
"end": [
515,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Task.Priority.dedicated",
"code": "def Priority.dedicated : Priority := 9",
"start": [
516,
1
],
"end": [
522,
39
],
"kind": "commanddeclaration"
},
{
"full_name": "Task.spawn",
"code": "@[noinline, extern \"lean_task_spawn\"]\nprotected def spawn {α : Type u} (fn : Unit → α) (prio := Priority.default) : Task α :=\n ⟨fn ()⟩",
"start": [
525,
1
],
"end": [
533,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Task.map",
"code": "@[noinline, extern \"lean_task_map\"]\nprotected def map (f : α → β) (x : Task α) (prio := Priority.default) (sync := false) : Task β :=\n ⟨f x.get⟩",
"start": [
536,
1
],
"end": [
546,
12
],
"kind": "commanddeclaration"
},
{
"full_name": "Task.bind",
"code": "@[noinline, extern \"lean_task_bind\"]\nprotected def bind (x : Task α) (f : α → Task β) (prio := Priority.default) (sync := false) :\n Task β :=\n ⟨(f x.get).get⟩",
"start": [
549,
1
],
"end": [
561,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "NonScalar",
"code": "structure NonScalar where\n mk ::\n val : Nat",
"start": [
565,
1
],
"end": [
573,
52
],
"kind": "commanddeclaration"
},
{
"full_name": "PNonScalar",
"code": "inductive PNonScalar : Type u where\n \n | mk (v : Nat) : PNonScalar",
"start": [
575,
1
],
"end": [
586,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.add_zero",
"code": "@[simp] protected theorem Nat.add_zero (n : Nat) : n + 0 = n",
"start": [
588,
1
],
"end": [
588,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "optParam_eq",
"code": "theorem optParam_eq (α : Sort u) (default : α) : optParam α default = α",
"start": [
590,
1
],
"end": [
590,
79
],
"kind": "commanddeclaration"
},
{
"full_name": "strictOr",
"code": "@[extern \"lean_strict_or\"] def strictOr (b₁ b₂ : Bool) := b₁ || b₂",
"start": [
594,
1
],
"end": [
598,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "strictAnd",
"code": "@[extern \"lean_strict_and\"] def strictAnd (b₁ b₂ : Bool) := b₁ && b₂",
"start": [
600,
1
],
"end": [
604,
69
],
"kind": "commanddeclaration"
},
{
"full_name": "bne",
"code": "@[inline] def bne {α : Type u} [BEq α] (a b : α) : Bool :=\n !(a == b)",
"start": [
606,
1
],
"end": [
614,
12
],
"kind": "commanddeclaration"
},
{
"full_name": "LawfulBEq",
"code": "class LawfulBEq (α : Type u) [BEq α] : Prop where\n \n eq_of_beq : {a b : α} → a == b → a = b\n \n protected rfl : {a : α} → a == a",
"start": [
618,
1
],
"end": [
627,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "trivial",
"code": "@[inherit_doc True.intro] theorem trivial : True",
"start": [
645,
1
],
"end": [
645,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "mt",
"code": "theorem mt {a b : Prop} (h₁ : a → b) (h₂ : ¬b) : ¬a",
"start": [
647,
1
],
"end": [
648,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "not_false",
"code": "theorem not_false : ¬False",
"start": [
650,
1
],
"end": [
650,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "not_not_intro",
"code": "theorem not_not_intro {p : Prop} (h : p) : ¬ ¬ p",
"start": [
652,
1
],
"end": [
653,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "proof_irrel",
"code": "theorem proof_irrel {a : Prop} (h₁ h₂ : a) : h₁ = h₂",
"start": [
656,
1
],
"end": [
656,
60
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.mp",
"code": "@[macro_inline] def Eq.mp {α β : Sort u} (h : α = β) (a : α) : β :=\n h ▸ a",
"start": [
658,
1
],
"end": [
666,
8
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.mpr",
"code": "@[macro_inline] def Eq.mpr {α β : Sort u} (h : α = β) (b : β) : α :=\n h ▸ b",
"start": [
668,
1
],
"end": [
676,
8
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.substr",
"code": "@[elab_as_elim]\ntheorem Eq.substr {α : Sort u} {p : α → Prop} {a b : α} (h₁ : b = a) (h₂ : p a) : p b",
"start": [
678,
1
],
"end": [
680,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "cast_eq",
"code": "@[simp] theorem cast_eq {α : Sort u} (h : α = α) (a : α) : cast h a = a",
"start": [
682,
1
],
"end": [
683,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "Ne",
"code": "@[reducible] def Ne {α : Sort u} (a b : α) :=\n ¬(a = b)",
"start": [
685,
1
],
"end": [
690,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "Ne.intro",
"code": "theorem Ne.intro (h : a = b → False) : a ≠ b",
"start": [
698,
1
],
"end": [
698,
50
],
"kind": "commanddeclaration"
},
{
"full_name": "Ne.elim",
"code": "theorem Ne.elim (h : a ≠ b) : a = b → False",
"start": [
700,
1
],
"end": [
700,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "Ne.irrefl",
"code": "theorem Ne.irrefl (h : a ≠ a) : False",
"start": [
702,
1
],
"end": [
702,
47
],
"kind": "commanddeclaration"
},
{
"full_name": "Ne.symm",
"code": "theorem Ne.symm (h : a ≠ b) : b ≠ a",
"start": [
704,
1
],
"end": [
704,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_comm",
"code": "theorem ne_comm {α} {a b : α} : a ≠ b ↔ b ≠ a",
"start": [
706,
1
],
"end": [
706,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "false_of_ne",
"code": "theorem false_of_ne : a ≠ a → False",
"start": [
708,
1
],
"end": [
708,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_false_of_self",
"code": "theorem ne_false_of_self : p → p ≠ False",
"start": [
710,
1
],
"end": [
711,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_true_of_not",
"code": "theorem ne_true_of_not : ¬p → p ≠ True",
"start": [
713,
1
],
"end": [
716,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "true_ne_false",
"code": "theorem true_ne_false : ¬True = False",
"start": [
718,
1
],
"end": [
718,
66
],
"kind": "commanddeclaration"
},
{
"full_name": "false_ne_true",
"code": "theorem false_ne_true : False ≠ True",
"start": [
719,
1
],
"end": [
719,
66
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.of_not_eq_true",
"code": "theorem Bool.of_not_eq_true : {b : Bool} → ¬ (b = true) → b = false",
"start": [
723,
1
],
"end": [
725,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.of_not_eq_false",
"code": "theorem Bool.of_not_eq_false : {b : Bool} → ¬ (b = false) → b = true",
"start": [
727,
1
],
"end": [
729,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_of_beq_false",
"code": "theorem ne_of_beq_false [BEq α] [LawfulBEq α] {a b : α} (h : (a == b) = false) : a ≠ b",
"start": [
731,
1
],
"end": [
732,
90
],
"kind": "commanddeclaration"
},
{
"full_name": "beq_false_of_ne",
"code": "theorem beq_false_of_ne [BEq α] [LawfulBEq α] {a b : α} (h : a ≠ b) : (a == b) = false",
"start": [
734,
1
],
"end": [
737,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq.ndrec",
"code": "noncomputable def HEq.ndrec.{u1, u2} {α : Sort u2} {a : α} {motive : {β : Sort u2} → β → Sort u1} (m : motive a) {β : Sort u2} {b : β} (h : HEq a b) : motive b :=\n h.rec m",
"start": [
742,
1
],
"end": [
744,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq.ndrecOn",
"code": "noncomputable def HEq.ndrecOn.{u1, u2} {α : Sort u2} {a : α} {motive : {β : Sort u2} → β → Sort u1} {β : Sort u2} {b : β} (h : HEq a b) (m : motive a) : motive b :=\n h.rec m",
"start": [
746,
1
],
"end": [
748,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq.elim",
"code": "noncomputable def HEq.elim {α : Sort u} {a : α} {p : α → Sort v} {b : α} (h₁ : HEq a b) (h₂ : p a) : p b :=\n eq_of_heq h₁ ▸ h₂",
"start": [
750,
1
],
"end": [
752,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq.subst",
"code": "theorem HEq.subst {p : (T : Sort u) → T → Prop} (h₁ : HEq a b) (h₂ : p α a) : p β b",
"start": [
754,
1
],
"end": [
755,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq.symm",
"code": "theorem HEq.symm (h : HEq a b) : HEq b a",
"start": [
757,
1
],
"end": [
758,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "heq_of_eq",
"code": "theorem heq_of_eq (h : a = a') : HEq a a'",
"start": [
760,
1
],
"end": [
761,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "HEq.trans",
"code": "theorem HEq.trans (h₁ : HEq a b) (h₂ : HEq b c) : HEq a c",
"start": [
763,
1
],
"end": [
764,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "heq_of_heq_of_eq",
"code": "theorem heq_of_heq_of_eq (h₁ : HEq a b) (h₂ : b = b') : HEq a b'",
"start": [
766,
1
],
"end": [
767,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "heq_of_eq_of_heq",
"code": "theorem heq_of_eq_of_heq (h₁ : a = a') (h₂ : HEq a' b) : HEq a b",
"start": [
769,
1
],
"end": [
770,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "type_eq_of_heq",
"code": "theorem type_eq_of_heq (h : HEq a b) : α = β",
"start": [
772,
1
],
"end": [
773,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "eqRec_heq",
"code": "theorem eqRec_heq {α : Sort u} {φ : α → Sort v} {a a' : α} : (h : a = a') → (p : φ a) → HEq (Eq.recOn (motive := fun x _ => φ x) h p) p",
"start": [
777,
1
],
"end": [
778,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "heq_of_eqRec_eq",
"code": "theorem heq_of_eqRec_eq {α β : Sort u} {a : α} {b : β} (h₁ : α = β) (h₂ : Eq.rec (motive := fun α _ => α) a h₁ = b) : HEq a b",
"start": [
780,
1
],
"end": [
783,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "cast_heq",
"code": "theorem cast_heq {α β : Sort u} : (h : α = β) → (a : α) → HEq (cast h a) a",
"start": [
785,
1
],
"end": [
786,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_iff_implies_and_implies",
"code": "theorem iff_iff_implies_and_implies (a b : Prop) : (a ↔ b) ↔ (a → b) ∧ (b → a)",
"start": [
790,
1
],
"end": [
791,
80
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.refl",
"code": "theorem Iff.refl (a : Prop) : a ↔ a",
"start": [
793,
1
],
"end": [
794,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.rfl",
"code": "protected theorem Iff.rfl {a : Prop} : a ↔ a",
"start": [
796,
1
],
"end": [
797,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.of_eq",
"code": "theorem Iff.of_eq (h : a = b) : a ↔ b",
"start": [
801,
1
],
"end": [
801,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.trans",
"code": "theorem Iff.trans (h₁ : a ↔ b) (h₂ : b ↔ c) : a ↔ c",
"start": [
803,
1
],
"end": [
804,
46
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.comm",
"code": "theorem Eq.comm {a b : α} : a = b ↔ b = a",
"start": [
810,
1
],
"end": [
810,
71
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_comm",
"code": "theorem eq_comm {a b : α} : a = b ↔ b = a",
"start": [
811,
1
],
"end": [
811,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.symm",
"code": "theorem Iff.symm (h : a ↔ b) : b ↔ a",
"start": [
813,
1
],
"end": [
813,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.comm",
"code": "theorem Iff.comm: (a ↔ b) ↔ (b ↔ a)",
"start": [
814,
1
],
"end": [
814,
67
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_comm",
"code": "theorem iff_comm : (a ↔ b) ↔ (b ↔ a)",
"start": [
815,
1
],
"end": [
815,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "And.symm",
"code": "theorem And.symm : a ∧ b → b ∧ a",
"start": [
817,
1
],
"end": [
817,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "And.comm",
"code": "theorem And.comm : a ∧ b ↔ b ∧ a",
"start": [
818,
1
],
"end": [
818,
64
],
"kind": "commanddeclaration"
},
{
"full_name": "and_comm",
"code": "theorem and_comm : a ∧ b ↔ b ∧ a",
"start": [
819,
1
],
"end": [
819,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.symm",
"code": "theorem Or.symm : a ∨ b → b ∨ a",
"start": [
821,
1
],
"end": [
821,
50
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.comm",
"code": "theorem Or.comm : a ∨ b ↔ b ∨ a",
"start": [
822,
1
],
"end": [
822,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "or_comm",
"code": "theorem or_comm : a ∨ b ↔ b ∨ a",
"start": [
823,
1
],
"end": [
823,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Exists.elim",
"code": "theorem Exists.elim {α : Sort u} {p : α → Prop} {b : Prop}\n (h₁ : Exists (fun x => p x)) (h₂ : ∀ (a : α), p a → b) : b",
"start": [
827,
1
],
"end": [
830,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_true_eq_true",
"code": "theorem decide_true_eq_true (h : Decidable True) : @decide True h = true",
"start": [
834,
1
],
"end": [
837,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_false_eq_false",
"code": "theorem decide_false_eq_false (h : Decidable False) : @decide False h = false",
"start": [
839,
1
],
"end": [
842,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "toBoolUsing",
"code": "@[inline] def toBoolUsing {p : Prop} (d : Decidable p) : Bool :=\n decide (h := d)",
"start": [
844,
1
],
"end": [
846,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "toBoolUsing_eq_true",
"code": "theorem toBoolUsing_eq_true {p : Prop} (d : Decidable p) (h : p) : toBoolUsing d = true",
"start": [
848,
1
],
"end": [
849,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "ofBoolUsing_eq_true",
"code": "theorem ofBoolUsing_eq_true {p : Prop} {d : Decidable p} (h : toBoolUsing d = true) : p",
"start": [
851,
1
],
"end": [
852,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "ofBoolUsing_eq_false",
"code": "theorem ofBoolUsing_eq_false {p : Prop} {d : Decidable p} (h : toBoolUsing d = false) : ¬ p",
"start": [
854,
1
],
"end": [
855,
35
],
"kind": "commanddeclaration"
},
{
"full_name": "Decidable.byCases",
"code": "@[macro_inline] def byCases {q : Sort u} [dec : Decidable p] (h1 : p → q) (h2 : ¬p → q) : q :=\n match dec with\n | isTrue h => h1 h\n | isFalse h => h2 h",
"start": [
866,
1
],
"end": [
874,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "Decidable.em",
"code": "theorem em (p : Prop) [Decidable p] : p ∨ ¬p",
"start": [
876,
1
],
"end": [
877,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "Decidable.byContradiction",
"code": "theorem byContradiction [dec : Decidable p] (h : ¬p → False) : p",
"start": [
880,
1
],
"end": [
881,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "Decidable.of_not_not",
"code": "theorem of_not_not [Decidable p] : ¬ ¬ p → p",
"start": [
883,
1
],
"end": [
884,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "Decidable.not_and_iff_or_not",
"code": "theorem not_and_iff_or_not (p q : Prop) [d₁ : Decidable p] [d₂ : Decidable q] : ¬ (p ∧ q) ↔ ¬ p ∨ ¬ q",
"start": [
886,
1
],
"end": [
894,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "decidable_of_decidable_of_iff",
"code": "@[inline] def decidable_of_decidable_of_iff [Decidable p] (h : p ↔ q) : Decidable q :=\n if hp : p then\n isTrue (Iff.mp h hp)\n else\n isFalse fun hq => absurd (Iff.mpr h hq) hp",
"start": [
900,
1
],
"end": [
905,
47
],
"kind": "commanddeclaration"
},
{
"full_name": "decidable_of_decidable_of_eq",
"code": "@[inline] def decidable_of_decidable_of_eq [Decidable p] (h : p = q) : Decidable q :=\n decidable_of_decidable_of_iff (p := p) (h ▸ Iff.rfl)",
"start": [
907,
1
],
"end": [
909,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "if_pos",
"code": "theorem if_pos {c : Prop} {h : Decidable c} (hc : c) {α : Sort u} {t e : α} : (ite c t e) = t",
"start": [
932,
1
],
"end": [
935,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "if_neg",
"code": "theorem if_neg {c : Prop} {h : Decidable c} (hnc : ¬c) {α : Sort u} {t e : α} : (ite c t e) = e",
"start": [
937,
1
],
"end": [
940,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "iteInduction",
"code": "def iteInduction {c} [inst : Decidable c] {motive : α → Sort _} {t e : α}\n (hpos : c → motive t) (hneg : ¬c → motive e) : motive (ite c t e) :=\n match inst with\n | isTrue h => hpos h\n | isFalse h => hneg h",
"start": [
942,
1
],
"end": [
947,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "dif_pos",
"code": "theorem dif_pos {c : Prop} {h : Decidable c} (hc : c) {α : Sort u} {t : c → α} {e : ¬ c → α} : (dite c t e) = t hc",
"start": [
949,
1
],
"end": [
952,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "dif_neg",
"code": "theorem dif_neg {c : Prop} {h : Decidable c} (hnc : ¬c) {α : Sort u} {t : c → α} {e : ¬ c → α} : (dite c t e) = e hnc",
"start": [
954,
1
],
"end": [
957,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "dif_eq_if",
"code": "theorem dif_eq_if (c : Prop) {h : Decidable c} {α : Sort u} (t : α) (e : α) : dite c (fun _ => t) (fun _ => e) = ite c t e",
"start": [
960,
1
],
"end": [
963,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "noConfusionTypeEnum",
"code": "abbrev noConfusionTypeEnum {α : Sort u} {β : Sort v} [inst : DecidableEq β] (f : α → β) (P : Sort w) (x y : α) : Sort w :=\n (inst (f x) (f y)).casesOn\n (fun _ => P)\n (fun _ => P → P)",
"start": [
975,
1
],
"end": [
979,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "noConfusionEnum",
"code": "abbrev noConfusionEnum {α : Sort u} {β : Sort v} [inst : DecidableEq β] (f : α → β) {P : Sort w} {x y : α} (h : x = y) : noConfusionTypeEnum f P x y :=\n Decidable.casesOn\n (motive := fun (inst : Decidable (f x = f y)) => Decidable.casesOn (motive := fun _ => Sort w) inst (fun _ => P) (fun _ => P → P))\n (inst (f x) (f y))\n (fun h' => False.elim (h' (congrArg f h)))\n (fun _ => fun x => x)",
"start": [
981,
1
],
"end": [
987,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "nonempty_of_exists",
"code": "theorem nonempty_of_exists {α : Sort u} {p : α → Prop} : Exists (fun x => p x) → Nonempty α",
"start": [
996,
1
],
"end": [
997,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Subsingleton",
"code": "class Subsingleton (α : Sort u) : Prop where\n \n intro ::\n \n allEq : (a b : α) → a = b",
"start": [
1001,
1
],
"end": [
1013,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Subsingleton.elim",
"code": "protected theorem Subsingleton.elim {α : Sort u} [h : Subsingleton α] : (a b : α) → a = b",
"start": [
1015,
1
],
"end": [
1016,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Subsingleton.helim",
"code": "protected theorem Subsingleton.helim {α β : Sort u} [h₁ : Subsingleton α] (h₂ : α = β) (a : α) (b : β) : HEq a b",
"start": [
1018,
1
],
"end": [
1021,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "recSubsingleton",
"code": "theorem recSubsingleton\n {p : Prop} [h : Decidable p]\n {h₁ : p → Sort u}\n {h₂ : ¬p → Sort u}\n [h₃ : ∀ (h : p), Subsingleton (h₁ h)]\n [h₄ : ∀ (h : ¬p), Subsingleton (h₂ h)]\n : Subsingleton (h.casesOn h₂ h₁)",
"start": [
1043,
1
],
"end": [
1052,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "Equivalence",
"code": "structure Equivalence {α : Sort u} (r : α → α → Prop) : Prop where\n \n refl : ∀ x, r x x\n \n symm : ∀ {x y}, r x y → r y x\n \n trans : ∀ {x y z}, r x y → r y z → r x z",
"start": [
1054,
1
],
"end": [
1071,
43
],
"kind": "commanddeclaration"
},
{
"full_name": "emptyRelation",
"code": "def emptyRelation {α : Sort u} (_ _ : α) : Prop :=\n False",
"start": [
1073,
1
],
"end": [
1075,
8
],
"kind": "commanddeclaration"
},
{
"full_name": "Subrelation",
"code": "def Subrelation {α : Sort u} (q r : α → α → Prop) :=\n ∀ {x y}, q x y → r x y",
"start": [
1077,
1
],
"end": [
1082,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "InvImage",
"code": "def InvImage {α : Sort u} {β : Sort v} (r : β → β → Prop) (f : α → β) : α → α → Prop :=\n fun a₁ a₂ => r (f a₁) (f a₂)",
"start": [
1084,
1
],
"end": [
1089,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "TC",
"code": "inductive TC {α : Sort u} (r : α → α → Prop) : α → α → Prop where\n \n | base : ∀ a b, r a b → TC r a b\n \n | trans : ∀ a b c, TC r a b → TC r b c → TC r a c",
"start": [
1091,
1
],
"end": [
1100,
52
],
"kind": "commanddeclaration"
},
{
"full_name": "Subtype.existsOfSubtype",
"code": "theorem existsOfSubtype {α : Type u} {p : α → Prop} : { x // p x } → Exists (fun x => p x)",
"start": [
1105,
1
],
"end": [
1106,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Subtype.eq",
"code": "protected theorem eq : ∀ {a1 a2 : {x // p x}}, val a1 = val a2 → a1 = a2",
"start": [
1110,
1
],
"end": [
1111,
31
],
"kind": "commanddeclaration"
},
{
"full_name": "Subtype.eta",
"code": "theorem eta (a : {x // p x}) (h : p (val a)) : mk (val a) h = a",
"start": [
1113,
1
],
"end": [
1115,
12
],
"kind": "commanddeclaration"
},
{
"full_name": "Sum.inhabitedLeft",
"code": "instance Sum.inhabitedLeft [Inhabited α] : Inhabited (Sum α β) where\n default := Sum.inl default",
"start": [
1129,
1
],
"end": [
1130,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Sum.inhabitedRight",
"code": "instance Sum.inhabitedRight [Inhabited β] : Inhabited (Sum α β) where\n default := Sum.inr default",
"start": [
1132,
1
],
"end": [
1133,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.lexLt",
"code": "def Prod.lexLt [LT α] [LT β] (s : α × β) (t : α × β) : Prop :=\n s.1 < t.1 ∨ (s.1 = t.1 ∧ s.2 < t.2)",
"start": [
1171,
1
],
"end": [
1173,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.lexLtDec",
"code": "instance Prod.lexLtDec\n [LT α] [LT β] [DecidableEq α]\n [(a b : α) → Decidable (a < b)] [(a b : β) → Decidable (a < b)]\n : (s t : α × β) → Decidable (Prod.lexLt s t) :=\n fun _ _ => inferInstanceAs (Decidable (_ ∨ _))",
"start": [
1175,
1
],
"end": [
1179,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.lexLt_def",
"code": "theorem Prod.lexLt_def [LT α] [LT β] (s t : α × β) : (Prod.lexLt s t) = (s.1 < t.1 ∨ (s.1 = t.1 ∧ s.2 < t.2))",
"start": [
1181,
1
],
"end": [
1182,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.eta",
"code": "theorem Prod.eta (p : α × β) : (p.1, p.2) = p",
"start": [
1184,
1
],
"end": [
1184,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.map",
"code": "def Prod.map {α₁ : Type u₁} {α₂ : Type u₂} {β₁ : Type v₁} {β₂ : Type v₂}\n (f : α₁ → α₂) (g : β₁ → β₂) : α₁ × β₁ → α₂ × β₂\n | (a, b) => (f a, g b)",
"start": [
1186,
1
],
"end": [
1192,
25
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.map_apply",
"code": "@[simp] theorem Prod.map_apply (f : α → β) (g : γ → δ) (x) (y) :\n Prod.map f g (x, y) = (f x, g y)",
"start": [
1194,
1
],
"end": [
1195,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.map_fst",
"code": "@[simp] theorem Prod.map_fst (f : α → β) (g : γ → δ) (x) : (Prod.map f g x).1 = f x.1",
"start": [
1196,
1
],
"end": [
1196,
93
],
"kind": "commanddeclaration"
},
{
"full_name": "Prod.map_snd",
"code": "@[simp] theorem Prod.map_snd (f : α → β) (g : γ → δ) (x) : (Prod.map f g x).2 = g x.2",
"start": [
1197,
1
],
"end": [
1197,
93
],
"kind": "commanddeclaration"
},
{
"full_name": "ex_of_PSigma",
"code": "theorem ex_of_PSigma {α : Type u} {p : α → Prop} : (PSigma (fun x => p x)) → Exists (fun x => p x)",
"start": [
1201,
1
],
"end": [
1202,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "PSigma.eta",
"code": "protected theorem PSigma.eta {α : Sort u} {β : α → Sort v} {a₁ a₂ : α} {b₁ : β a₁} {b₂ : β a₂}\n (h₁ : a₁ = a₂) (h₂ : Eq.ndrec b₁ h₁ = b₂) : PSigma.mk a₁ b₁ = PSigma.mk a₂ b₂",
"start": [
1204,
1
],
"end": [
1208,
12
],
"kind": "commanddeclaration"
},
{
"full_name": "PUnit.subsingleton",
"code": "theorem PUnit.subsingleton (a b : PUnit) : a = b",
"start": [
1212,
1
],
"end": [
1213,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "PUnit.eq_punit",
"code": "theorem PUnit.eq_punit (a : PUnit) : a = ⟨⟩",
"start": [
1215,
1
],
"end": [
1216,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Setoid",
"code": "class Setoid (α : Sort u) where\n \n r : α → α → Prop\n \n iseqv : Equivalence r",
"start": [
1229,
1
],
"end": [
1237,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "Setoid.refl",
"code": "theorem refl (a : α) : a ≈ a",
"start": [
1246,
1
],
"end": [
1247,
15
],
"kind": "commanddeclaration"
},
{
"full_name": "Setoid.symm",
"code": "theorem symm {a b : α} (hab : a ≈ b) : b ≈ a",
"start": [
1249,
1
],
"end": [
1250,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Setoid.trans",
"code": "theorem trans {a b c : α} (hab : a ≈ b) (hbc : b ≈ c) : a ≈ c",
"start": [
1252,
1
],
"end": [
1253,
22
],
"kind": "commanddeclaration"
},
{
"full_name": "propext",
"code": "axiom propext {a b : Prop} : (a ↔ b) → a = b",
"start": [
1260,
1
],
"end": [
1294,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.propIntro",
"code": "theorem Eq.propIntro {a b : Prop} (h₁ : a → b) (h₂ : b → a) : a = b",
"start": [
1296,
1
],
"end": [
1297,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.succ.inj",
"code": "theorem Nat.succ.inj {m n : Nat} : m.succ = n.succ → m = n",
"start": [
1320,
1
],
"end": [
1321,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.succ.injEq",
"code": "theorem Nat.succ.injEq (u v : Nat) : (u.succ = v.succ) = (u = v)",
"start": [
1323,
1
],
"end": [
1324,
48
],
"kind": "commanddeclaration"
},
{
"full_name": "beq_iff_eq",
"code": "@[simp] theorem beq_iff_eq [BEq α] [LawfulBEq α] (a b : α) : a == b ↔ a = b",
"start": [
1326,
1
],
"end": [
1327,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "Not.elim",
"code": "def Not.elim {α : Sort _} (H1 : ¬a) (H2 : a) : α := absurd H2 H1",
"start": [
1331,
1
],
"end": [
1333,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "And.elim",
"code": "abbrev And.elim (f : a → b → α) (h : a ∧ b) : α := f h.left h.right",
"start": [
1335,
1
],
"end": [
1336,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.elim",
"code": "def Iff.elim (f : (a → b) → (b → a) → α) (h : a ↔ b) : α := f h.mp h.mpr",
"start": [
1338,
1
],
"end": [
1339,
73
],
"kind": "commanddeclaration"
},
{
"full_name": "Iff.subst",
"code": "theorem Iff.subst {a b : Prop} {p : Prop → Prop} (h₁ : a ↔ b) (h₂ : p a) : p b",
"start": [
1341,
1
],
"end": [
1343,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Not.intro",
"code": "theorem Not.intro {a : Prop} (h : a → False) : ¬a",
"start": [
1345,
1
],
"end": [
1345,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "Not.imp",
"code": "theorem Not.imp {a b : Prop} (H2 : ¬b) (H1 : a → b) : ¬a",
"start": [
1347,
1
],
"end": [
1347,
69
],
"kind": "commanddeclaration"
},
{
"full_name": "not_congr",
"code": "theorem not_congr (h : a ↔ b) : ¬a ↔ ¬b",
"start": [
1349,
1
],
"end": [
1349,
60
],
"kind": "commanddeclaration"
},
{
"full_name": "not_not_not",
"code": "theorem not_not_not : ¬¬¬a ↔ ¬a",
"start": [
1351,
1
],
"end": [
1351,
69
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_of_true",
"code": "theorem iff_of_true (ha : a) (hb : b) : a ↔ b",
"start": [
1353,
1
],
"end": [
1353,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_of_false",
"code": "theorem iff_of_false (ha : ¬a) (hb : ¬b) : a ↔ b",
"start": [
1354,
1
],
"end": [
1354,
78
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_true_left",
"code": "theorem iff_true_left (ha : a) : (a ↔ b) ↔ b",
"start": [
1356,
1
],
"end": [
1356,
86
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_true_right",
"code": "theorem iff_true_right (ha : a) : (b ↔ a) ↔ b",
"start": [
1357,
1
],
"end": [
1357,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_false_left",
"code": "theorem iff_false_left (ha : ¬a) : (a ↔ b) ↔ ¬b",
"start": [
1359,
1
],
"end": [
1359,
94
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_false_right",
"code": "theorem iff_false_right (ha : ¬a) : (b ↔ a) ↔ ¬b",
"start": [
1360,
1
],
"end": [
1360,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "of_iff_true",
"code": "theorem of_iff_true (h : a ↔ True) : a",
"start": [
1362,
1
],
"end": [
1362,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_true_intro",
"code": "theorem iff_true_intro (h : a) : a ↔ True",
"start": [
1363,
1
],
"end": [
1363,
67
],
"kind": "commanddeclaration"
},
{
"full_name": "not_of_iff_false",
"code": "theorem not_of_iff_false : (p ↔ False) → ¬p",
"start": [
1365,
1
],
"end": [
1365,
54
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_false_intro",
"code": "theorem iff_false_intro (h : ¬a) : a ↔ False",
"start": [
1366,
1
],
"end": [
1366,
66
],
"kind": "commanddeclaration"
},
{
"full_name": "not_iff_false_intro",
"code": "theorem not_iff_false_intro (h : a) : ¬a ↔ False",
"start": [
1368,
1
],
"end": [
1368,
86
],
"kind": "commanddeclaration"
},
{
"full_name": "not_true",
"code": "theorem not_true : (¬True) ↔ False",
"start": [
1369,
1
],
"end": [
1369,
78
],
"kind": "commanddeclaration"
},
{
"full_name": "not_false_iff",
"code": "theorem not_false_iff : (¬False) ↔ True",
"start": [
1371,
1
],
"end": [
1371,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.to_iff",
"code": "theorem Eq.to_iff : a = b → (a ↔ b)",
"start": [
1373,
1
],
"end": [
1373,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_of_eq",
"code": "theorem iff_of_eq : a = b → (a ↔ b)",
"start": [
1374,
1
],
"end": [
1374,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "neq_of_not_iff",
"code": "theorem neq_of_not_iff : ¬(a ↔ b) → a ≠ b",
"start": [
1375,
1
],
"end": [
1375,
58
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_iff_eq",
"code": "theorem iff_iff_eq : (a ↔ b) ↔ a = b",
"start": [
1377,
1
],
"end": [
1377,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_iff_iff",
"code": "@[simp] theorem eq_iff_iff : (a = b) ↔ (a ↔ b)",
"start": [
1378,
1
],
"end": [
1378,
66
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_self_iff_true",
"code": "theorem eq_self_iff_true (a : α) : a = a ↔ True",
"start": [
1380,
1
],
"end": [
1380,
72
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_self_iff_false",
"code": "theorem ne_self_iff_false (a : α) : a ≠ a ↔ False",
"start": [
1381,
1
],
"end": [
1381,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "false_of_true_iff_false",
"code": "theorem false_of_true_iff_false (h : True ↔ False) : False",
"start": [
1383,
1
],
"end": [
1383,
75
],
"kind": "commanddeclaration"
},
{
"full_name": "false_of_true_eq_false",
"code": "theorem false_of_true_eq_false (h : True = False) : False",
"start": [
1384,
1
],
"end": [
1384,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "true_eq_false_of_false",
"code": "theorem true_eq_false_of_false : False → (True = False)",
"start": [
1386,
1
],
"end": [
1386,
70
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_def",
"code": "theorem iff_def : (a ↔ b) ↔ (a → b) ∧ (b → a)",
"start": [
1388,
1
],
"end": [
1388,
82
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_def'",
"code": "theorem iff_def' : (a ↔ b) ↔ (b → a) ∧ (a → b)",
"start": [
1389,
1
],
"end": [
1389,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "true_iff_false",
"code": "theorem true_iff_false : (True ↔ False) ↔ False",
"start": [
1391,
1
],
"end": [
1391,
86
],
"kind": "commanddeclaration"
},
{
"full_name": "false_iff_true",
"code": "theorem false_iff_true : (False ↔ True) ↔ False",
"start": [
1392,
1
],
"end": [
1392,
86
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_not_self",
"code": "theorem iff_not_self : ¬(a ↔ ¬a)",
"start": [
1394,
1
],
"end": [
1394,
70
],
"kind": "commanddeclaration"
},
{
"full_name": "heq_self_iff_true",
"code": "theorem heq_self_iff_true (a : α) : HEq a a ↔ True",
"start": [
1395,
1
],
"end": [
1395,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "not_not_of_not_imp",
"code": "theorem not_not_of_not_imp : ¬(a → b) → ¬¬a",
"start": [
1399,
1
],
"end": [
1399,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "not_of_not_imp",
"code": "theorem not_of_not_imp {a : Prop} : ¬(a → b) → ¬b",
"start": [
1401,
1
],
"end": [
1401,
69
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_not_self",
"code": "@[simp] theorem imp_not_self : (a → ¬a) ↔ ¬a",
"start": [
1403,
1
],
"end": [
1403,
95
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_intro",
"code": "theorem imp_intro {α β : Prop} (h : α) : β → α",
"start": [
1405,
1
],
"end": [
1405,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_imp_imp",
"code": "theorem imp_imp_imp {a b c d : Prop} (h₀ : c → a) (h₁ : b → d) : (a → b) → (c → d)",
"start": [
1407,
1
],
"end": [
1407,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_iff_right",
"code": "theorem imp_iff_right {a : Prop} (ha : a) : (a → b) ↔ b",
"start": [
1409,
1
],
"end": [
1409,
91
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_true_iff",
"code": "theorem imp_true_iff (α : Sort u) : (α → True) ↔ True",
"start": [
1412,
1
],
"end": [
1412,
91
],
"kind": "commanddeclaration"
},
{
"full_name": "false_imp_iff",
"code": "theorem false_imp_iff (a : Prop) : (False → a) ↔ True",
"start": [
1414,
1
],
"end": [
1414,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "true_imp_iff",
"code": "theorem true_imp_iff (α : Prop) : (True → α) ↔ α",
"start": [
1416,
1
],
"end": [
1416,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_self",
"code": "@[simp high] theorem imp_self : (a → a) ↔ True",
"start": [
1418,
1
],
"end": [
1418,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_false",
"code": "@[simp] theorem imp_false : (a → False) ↔ ¬a",
"start": [
1420,
1
],
"end": [
1420,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "imp.swap",
"code": "theorem imp.swap : (a → b → c) ↔ (b → a → c)",
"start": [
1422,
1
],
"end": [
1422,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_not_comm",
"code": "theorem imp_not_comm : (a → ¬b) ↔ (b → ¬a)",
"start": [
1424,
1
],
"end": [
1424,
55
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_congr_left",
"code": "theorem imp_congr_left (h : a ↔ b) : (a → c) ↔ (b → c)",
"start": [
1426,
1
],
"end": [
1426,
91
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_congr_right",
"code": "theorem imp_congr_right (h : a → (b ↔ c)) : (a → b) ↔ (a → c)",
"start": [
1428,
1
],
"end": [
1429,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_congr_ctx",
"code": "theorem imp_congr_ctx (h₁ : a ↔ c) (h₂ : c → (b ↔ d)) : (a → b) ↔ (c → d)",
"start": [
1431,
1
],
"end": [
1432,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_congr",
"code": "theorem imp_congr (h₁ : a ↔ c) (h₂ : b ↔ d) : (a → b) ↔ (c → d)",
"start": [
1434,
1
],
"end": [
1434,
96
],
"kind": "commanddeclaration"
},
{
"full_name": "imp_iff_not",
"code": "theorem imp_iff_not (hb : ¬b) : a → b ↔ ¬a",
"start": [
1436,
1
],
"end": [
1436,
90
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.sound",
"code": "axiom sound : ∀ {α : Sort u} {r : α → α → Prop} {a b : α}, r a b → Quot.mk r a = Quot.mk r b",
"start": [
1441,
1
],
"end": [
1471,
93
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.liftBeta",
"code": "protected theorem liftBeta {α : Sort u} {r : α → α → Prop} {β : Sort v}\n (f : α → β)\n (c : (a b : α) → r a b → f a = f b)\n (a : α)\n : lift f c (Quot.mk r a) = f a",
"start": [
1473,
1
],
"end": [
1478,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.indBeta",
"code": "protected theorem indBeta {α : Sort u} {r : α → α → Prop} {motive : Quot r → Prop}\n (p : (a : α) → motive (Quot.mk r a))\n (a : α)\n : (ind p (Quot.mk r a) : motive (Quot.mk r a)) = p a",
"start": [
1480,
1
],
"end": [
1484,
6
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.liftOn",
"code": "protected abbrev liftOn {α : Sort u} {β : Sort v} {r : α → α → Prop}\n (q : Quot r) (f : α → β) (c : (a b : α) → r a b → f a = f b) : β :=\n lift f c q",
"start": [
1486,
1
],
"end": [
1492,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.inductionOn",
"code": "@[elab_as_elim]\nprotected theorem inductionOn {α : Sort u} {r : α → α → Prop} {motive : Quot r → Prop}\n (q : Quot r)\n (h : (a : α) → motive (Quot.mk r a))\n : motive q",
"start": [
1494,
1
],
"end": [
1499,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.exists_rep",
"code": "theorem exists_rep {α : Sort u} {r : α → α → Prop} (q : Quot r) : Exists (fun a => (Quot.mk r a) = q)",
"start": [
1501,
1
],
"end": [
1502,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.indep",
"code": "@[reducible, macro_inline]\nprotected def indep (f : (a : α) → motive (Quot.mk r a)) (a : α) : PSigma motive :=\n ⟨Quot.mk r a, f a⟩",
"start": [
1509,
1
],
"end": [
1512,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.indepCoherent",
"code": "protected theorem indepCoherent\n (f : (a : α) → motive (Quot.mk r a))\n (h : (a b : α) → (p : r a b) → Eq.ndrec (f a) (sound p) = f b)\n : (a b : α) → r a b → Quot.indep f a = Quot.indep f b",
"start": [
1514,
1
],
"end": [
1518,
46
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.liftIndepPr1",
"code": "protected theorem liftIndepPr1\n (f : (a : α) → motive (Quot.mk r a))\n (h : ∀ (a b : α) (p : r a b), Eq.ndrec (f a) (sound p) = f b)\n (q : Quot r)\n : (lift (Quot.indep f) (Quot.indepCoherent f h) q).1 = q",
"start": [
1520,
1
],
"end": [
1526,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.rec",
"code": "protected abbrev rec\n (f : (a : α) → motive (Quot.mk r a))\n (h : (a b : α) → (p : r a b) → Eq.ndrec (f a) (sound p) = f b)\n (q : Quot r) : motive q :=\n Eq.ndrecOn (Quot.liftIndepPr1 f h q) ((lift (Quot.indep f) (Quot.indepCoherent f h) q).2)",
"start": [
1528,
1
],
"end": [
1540,
92
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.recOn",
"code": "@[inherit_doc Quot.rec] protected abbrev recOn\n (q : Quot r)\n (f : (a : α) → motive (Quot.mk r a))\n (h : (a b : α) → (p : r a b) → Eq.ndrec (f a) (sound p) = f b)\n : motive q :=\n q.rec f h",
"start": [
1542,
1
],
"end": [
1547,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.recOnSubsingleton",
"code": "protected abbrev recOnSubsingleton\n [h : (a : α) → Subsingleton (motive (Quot.mk r a))]\n (q : Quot r)\n (f : (a : α) → motive (Quot.mk r a))\n : motive q := by\n induction q using Quot.rec\n apply f\n apply Subsingleton.elim",
"start": [
1549,
1
],
"end": [
1560,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Quot.hrecOn",
"code": "protected abbrev hrecOn\n (q : Quot r)\n (f : (a : α) → motive (Quot.mk r a))\n (c : (a b : α) → (p : r a b) → HEq (f a) (f b))\n : motive q :=\n Quot.recOn q f fun a b p => eq_of_heq <|\n have p₁ : HEq (Eq.ndrec (f a) (sound p)) (f a) := eqRec_heq (sound p) (f a)\n HEq.trans p₁ (c a b p)",
"start": [
1562,
1
],
"end": [
1574,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient",
"code": "def Quotient {α : Sort u} (s : Setoid α) :=\n @Quot α Setoid.r",
"start": [
1580,
1
],
"end": [
1586,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.mk",
"code": "@[inline]\nprotected def mk {α : Sort u} (s : Setoid α) (a : α) : Quotient s :=\n Quot.mk Setoid.r a",
"start": [
1590,
1
],
"end": [
1593,
21
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.mk'",
"code": "protected def mk' {α : Sort u} [s : Setoid α] (a : α) : Quotient s :=\n Quotient.mk s a",
"start": [
1595,
1
],
"end": [
1600,
18
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.sound",
"code": "theorem sound {α : Sort u} {s : Setoid α} {a b : α} : a ≈ b → Quotient.mk s a = Quotient.mk s b",
"start": [
1602,
1
],
"end": [
1607,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.lift",
"code": "protected abbrev lift {α : Sort u} {β : Sort v} {s : Setoid α} (f : α → β) : ((a b : α) → a ≈ b → f a = f b) → Quotient s → β :=\n Quot.lift f",
"start": [
1609,
1
],
"end": [
1614,
14
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.ind",
"code": "protected theorem ind {α : Sort u} {s : Setoid α} {motive : Quotient s → Prop} : ((a : α) → motive (Quotient.mk s a)) → (q : Quotient s) → motive q",
"start": [
1616,
1
],
"end": [
1618,
11
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.liftOn",
"code": "protected abbrev liftOn {α : Sort u} {β : Sort v} {s : Setoid α} (q : Quotient s) (f : α → β) (c : (a b : α) → a ≈ b → f a = f b) : β :=\n Quot.liftOn q f c",
"start": [
1620,
1
],
"end": [
1625,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.inductionOn",
"code": "@[elab_as_elim]\nprotected theorem inductionOn {α : Sort u} {s : Setoid α} {motive : Quotient s → Prop}\n (q : Quotient s)\n (h : (a : α) → motive (Quotient.mk s a))\n : motive q",
"start": [
1627,
1
],
"end": [
1633,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.exists_rep",
"code": "theorem exists_rep {α : Sort u} {s : Setoid α} (q : Quotient s) : Exists (fun (a : α) => Quotient.mk s a = q)",
"start": [
1635,
1
],
"end": [
1636,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.rec",
"code": "@[inline, elab_as_elim]\nprotected def rec\n (f : (a : α) → motive (Quotient.mk s a))\n (h : (a b : α) → (p : a ≈ b) → Eq.ndrec (f a) (Quotient.sound p) = f b)\n (q : Quotient s)\n : motive q :=\n Quot.rec f h q",
"start": [
1643,
1
],
"end": [
1650,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.recOn",
"code": "@[elab_as_elim]\nprotected abbrev recOn\n (q : Quotient s)\n (f : (a : α) → motive (Quotient.mk s a))\n (h : (a b : α) → (p : a ≈ b) → Eq.ndrec (f a) (Quotient.sound p) = f b)\n : motive q :=\n Quot.recOn q f h",
"start": [
1652,
1
],
"end": [
1659,
19
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.recOnSubsingleton",
"code": "@[elab_as_elim]\nprotected abbrev recOnSubsingleton\n [h : (a : α) → Subsingleton (motive (Quotient.mk s a))]\n (q : Quotient s)\n (f : (a : α) → motive (Quotient.mk s a))\n : motive q :=\n Quot.recOnSubsingleton (h := h) q f",
"start": [
1661,
1
],
"end": [
1668,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.hrecOn",
"code": "@[elab_as_elim]\nprotected abbrev hrecOn\n (q : Quotient s)\n (f : (a : α) → motive (Quotient.mk s a))\n (c : (a b : α) → (p : a ≈ b) → HEq (f a) (f b))\n : motive q :=\n Quot.hrecOn q f c",
"start": [
1670,
1
],
"end": [
1677,
20
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.lift₂",
"code": "protected abbrev lift₂\n (f : α → β → φ)\n (c : (a₁ : α) → (b₁ : β) → (a₂ : α) → (b₂ : β) → a₁ ≈ a₂ → b₁ ≈ b₂ → f a₁ b₁ = f a₂ b₂)\n (q₁ : Quotient s₁) (q₂ : Quotient s₂)\n : φ := by\n apply Quotient.lift (fun (a₁ : α) => Quotient.lift (f a₁) (fun (a b : β) => c a₁ a a₁ b (Setoid.refl a₁)) q₂) _ q₁\n intros\n induction q₂ using Quotient.ind\n apply c; assumption; apply Setoid.refl",
"start": [
1685,
1
],
"end": [
1694,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.liftOn₂",
"code": "protected abbrev liftOn₂\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (f : α → β → φ)\n (c : (a₁ : α) → (b₁ : β) → (a₂ : α) → (b₂ : β) → a₁ ≈ a₂ → b₁ ≈ b₂ → f a₁ b₁ = f a₂ b₂)\n : φ :=\n Quotient.lift₂ f c q₁ q₂",
"start": [
1696,
1
],
"end": [
1703,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.ind₂",
"code": "@[elab_as_elim]\nprotected theorem ind₂\n {motive : Quotient s₁ → Quotient s₂ → Prop}\n (h : (a : α) → (b : β) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n : motive q₁ q₂",
"start": [
1705,
1
],
"end": [
1714,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.inductionOn₂",
"code": "@[elab_as_elim]\nprotected theorem inductionOn₂\n {motive : Quotient s₁ → Quotient s₂ → Prop}\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (h : (a : α) → (b : β) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))\n : motive q₁ q₂",
"start": [
1716,
1
],
"end": [
1725,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.inductionOn₃",
"code": "@[elab_as_elim]\nprotected theorem inductionOn₃\n {s₃ : Setoid φ}\n {motive : Quotient s₁ → Quotient s₂ → Quotient s₃ → Prop}\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (q₃ : Quotient s₃)\n (h : (a : α) → (b : β) → (c : φ) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b) (Quotient.mk s₃ c))\n : motive q₁ q₂ q₃",
"start": [
1727,
1
],
"end": [
1739,
10
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.rel",
"code": "private def rel {s : Setoid α} (q₁ q₂ : Quotient s) : Prop :=\n Quotient.liftOn₂ q₁ q₂\n (fun a₁ a₂ => a₁ ≈ a₂)\n (fun _ _ _ _ a₁b₁ a₂b₂ =>\n propext (Iff.intro\n (fun a₁a₂ => Setoid.trans (Setoid.symm a₁b₁) (Setoid.trans a₁a₂ a₂b₂))\n (fun b₁b₂ => Setoid.trans a₁b₁ (Setoid.trans b₁b₂ (Setoid.symm a₂b₂)))))",
"start": [
1747,
1
],
"end": [
1753,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.rel.refl",
"code": "private theorem rel.refl {s : Setoid α} (q : Quotient s) : rel q q",
"start": [
1755,
1
],
"end": [
1756,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.rel_of_eq",
"code": "private theorem rel_of_eq {s : Setoid α} {q₁ q₂ : Quotient s} : q₁ = q₂ → rel q₁ q₂",
"start": [
1758,
1
],
"end": [
1759,
38
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.exact",
"code": "theorem exact {s : Setoid α} {a b : α} : Quotient.mk s a = Quotient.mk s b → a ≈ b",
"start": [
1761,
1
],
"end": [
1762,
23
],
"kind": "commanddeclaration"
},
{
"full_name": "Quotient.recOnSubsingleton₂",
"code": "@[elab_as_elim]\nprotected abbrev recOnSubsingleton₂\n {motive : Quotient s₁ → Quotient s₂ → Sort uC}\n [s : (a : α) → (b : β) → Subsingleton (motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))]\n (q₁ : Quotient s₁)\n (q₂ : Quotient s₂)\n (g : (a : α) → (b : β) → motive (Quotient.mk s₁ a) (Quotient.mk s₂ b))\n : motive q₁ q₂ := by\n induction q₁ using Quot.recOnSubsingleton\n induction q₂ using Quot.recOnSubsingleton\n apply g\n intro a; apply s\n induction q₂ using Quot.recOnSubsingleton\n intro a; apply s\n infer_instance",
"start": [
1771,
1
],
"end": [
1786,
17
],
"kind": "commanddeclaration"
},
{
"full_name": "funext",
"code": "theorem funext {α : Sort u} {β : α → Sort v} {f g : (x : α) → β x}\n (h : ∀ x, f x = g x) : f = g",
"start": [
1805,
1
],
"end": [
1825,
42
],
"kind": "commanddeclaration"
},
{
"full_name": "Squash",
"code": "def Squash (α : Type u) := Quot (fun (_ _ : α) => True)",
"start": [
1832,
1
],
"end": [
1846,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "Squash.mk",
"code": "def Squash.mk {α : Type u} (x : α) : Squash α := Quot.mk _ x",
"start": [
1848,
1
],
"end": [
1849,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "Squash.ind",
"code": "theorem Squash.ind {α : Type u} {motive : Squash α → Prop} (h : ∀ (a : α), motive (Squash.mk a)) : ∀ (q : Squash α), motive q",
"start": [
1851,
1
],
"end": [
1852,
13
],
"kind": "commanddeclaration"
},
{
"full_name": "Squash.lift",
"code": "@[inline] def Squash.lift {α β} [Subsingleton β] (s : Squash α) (f : α → β) : β :=\n Quot.lift f (fun _ _ _ => Subsingleton.elim _ _) s",
"start": [
1854,
1
],
"end": [
1856,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "Antisymm",
"code": "class Antisymm {α : Sort u} (r : α → α → Prop) where\n \n antisymm {a b : α} : r a b → r b a → a = b",
"start": [
1867,
1
],
"end": [
1872,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.trustCompiler",
"code": "axiom trustCompiler : True",
"start": [
1877,
1
],
"end": [
1880,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.reduceBool",
"code": "opaque reduceBool (b : Bool) : Bool :=\n have := trustCompiler\n b",
"start": [
1882,
1
],
"end": [
1904,
4
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.reduceNat",
"code": "opaque reduceNat (n : Nat) : Nat :=\n have := trustCompiler\n n",
"start": [
1906,
1
],
"end": [
1916,
4
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.ofReduceBool",
"code": "axiom ofReduceBool (a b : Bool) (h : reduceBool a = b) : a = b",
"start": [
1919,
1
],
"end": [
1932,
63
],
"kind": "commanddeclaration"
},
{
"full_name": "Lean.ofReduceNat",
"code": "axiom ofReduceNat (a b : Nat) (h : reduceNat a = b) : a = b",
"start": [
1934,
1
],
"end": [
1943,
60
],
"kind": "commanddeclaration"
},
{
"full_name": "ge_iff_le",
"code": "@[simp] theorem ge_iff_le [LE α] {x y : α} : x ≥ y ↔ y ≤ x",
"start": [
1947,
1
],
"end": [
1947,
70
],
"kind": "commanddeclaration"
},
{
"full_name": "gt_iff_lt",
"code": "@[simp] theorem gt_iff_lt [LT α] {x y : α} : x > y ↔ y < x",
"start": [
1949,
1
],
"end": [
1949,
70
],
"kind": "commanddeclaration"
},
{
"full_name": "le_of_eq_of_le",
"code": "theorem le_of_eq_of_le {a b c : α} [LE α] (h₁ : a = b) (h₂ : b ≤ c) : a ≤ c",
"start": [
1951,
1
],
"end": [
1951,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "le_of_le_of_eq",
"code": "theorem le_of_le_of_eq {a b c : α} [LE α] (h₁ : a ≤ b) (h₂ : b = c) : a ≤ c",
"start": [
1953,
1
],
"end": [
1953,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "lt_of_eq_of_lt",
"code": "theorem lt_of_eq_of_lt {a b c : α} [LT α] (h₁ : a = b) (h₂ : b < c) : a < c",
"start": [
1955,
1
],
"end": [
1955,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "lt_of_lt_of_eq",
"code": "theorem lt_of_lt_of_eq {a b c : α} [LT α] (h₁ : a < b) (h₂ : b = c) : a < c",
"start": [
1957,
1
],
"end": [
1957,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.Associative",
"code": "class Associative (op : α → α → α) : Prop where\n \n assoc : (a b c : α) → op (op a b) c = op a (op b c)",
"start": [
1962,
1
],
"end": [
1968,
54
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.Commutative",
"code": "class Commutative (op : α → α → α) : Prop where\n \n comm : (a b : α) → op a b = op b a",
"start": [
1970,
1
],
"end": [
1976,
37
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.IdempotentOp",
"code": "class IdempotentOp (op : α → α → α) : Prop where\n \n idempotent : (x : α) → op x x = x",
"start": [
1978,
1
],
"end": [
1984,
36
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.LeftIdentity",
"code": "class LeftIdentity (op : α → β → β) (o : outParam α) : Prop",
"start": [
1986,
1
],
"end": [
1992,
60
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.LawfulLeftIdentity",
"code": "class LawfulLeftIdentity (op : α → β → β) (o : outParam α) extends LeftIdentity op o : Prop where\n \n left_id : ∀ a, op o a = a",
"start": [
1994,
1
],
"end": [
2000,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.RightIdentity",
"code": "class RightIdentity (op : α → β → α) (o : outParam β) : Prop",
"start": [
2002,
1
],
"end": [
2008,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.LawfulRightIdentity",
"code": "class LawfulRightIdentity (op : α → β → α) (o : outParam β) extends RightIdentity op o : Prop where\n \n right_id : ∀ a, op a o = a",
"start": [
2010,
1
],
"end": [
2016,
29
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.Identity",
"code": "class Identity (op : α → α → α) (o : outParam α) extends LeftIdentity op o, RightIdentity op o : Prop",
"start": [
2018,
1
],
"end": [
2024,
102
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.LawfulIdentity",
"code": "class LawfulIdentity (op : α → α → α) (o : outParam α) extends Identity op o, LawfulLeftIdentity op o, LawfulRightIdentity op o : Prop",
"start": [
2026,
1
],
"end": [
2030,
135
],
"kind": "commanddeclaration"
},
{
"full_name": "Std.LawfulCommIdentity",
"code": "class LawfulCommIdentity (op : α → α → α) (o : outParam α) [hc : Commutative op] extends LawfulIdentity op o : Prop where\n left_id a := Eq.trans (hc.comm o a) (right_id a)\n right_id a := Eq.trans (hc.comm a o) (left_id a)",
"start": [
2032,
1
],
"end": [
2043,
51
],
"kind": "commanddeclaration"
}
] |
.lake/packages/lean4/src/lean/Init/SimpLemmas.lean | [
".lake/packages/lean4/src/lean/Init/Core.lean"
] | [
{
"full_name": "of_eq_true",
"code": "theorem of_eq_true (h : p = True) : p",
"start": [
12,
1
],
"end": [
12,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "of_eq_false",
"code": "theorem of_eq_false (h : p = False) : ¬ p",
"start": [
13,
1
],
"end": [
13,
76
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_true",
"code": "theorem eq_true (h : p) : p = True",
"start": [
15,
1
],
"end": [
16,
41
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_false",
"code": "theorem eq_false (h : ¬ p) : p = False",
"start": [
21,
1
],
"end": [
22,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_false'",
"code": "theorem eq_false' (h : p → False) : p = False",
"start": [
24,
1
],
"end": [
24,
60
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_true_of_decide",
"code": "theorem eq_true_of_decide {p : Prop} [Decidable p] (h : decide p = true) : p = True",
"start": [
26,
1
],
"end": [
27,
32
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_false_of_decide",
"code": "theorem eq_false_of_decide {p : Prop} {_ : Decidable p} (h : decide p = false) : p = False",
"start": [
29,
1
],
"end": [
30,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "eq_self",
"code": "@[simp] theorem eq_self (a : α) : (a = a) = True",
"start": [
32,
1
],
"end": [
32,
64
],
"kind": "commanddeclaration"
},
{
"full_name": "implies_congr",
"code": "theorem implies_congr {p₁ p₂ : Sort u} {q₁ q₂ : Sort v} (h₁ : p₁ = p₂) (h₂ : q₁ = q₂) : (p₁ → q₁) = (p₂ → q₂)",
"start": [
34,
1
],
"end": [
35,
16
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_congr",
"code": "theorem iff_congr {p₁ p₂ q₁ q₂ : Prop} (h₁ : p₁ ↔ p₂) (h₂ : q₁ ↔ q₂) : (p₁ ↔ q₁) ↔ (p₂ ↔ q₂)",
"start": [
37,
1
],
"end": [
38,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "implies_dep_congr_ctx",
"code": "theorem implies_dep_congr_ctx {p₁ p₂ q₁ : Prop} (h₁ : p₁ = p₂) {q₂ : p₂ → Prop} (h₂ : (h : p₂) → q₁ = q₂ h) : (p₁ → q₁) = ((h : p₂) → q₂ h)",
"start": [
40,
1
],
"end": [
43,
57
],
"kind": "commanddeclaration"
},
{
"full_name": "implies_congr_ctx",
"code": "theorem implies_congr_ctx {p₁ p₂ q₁ q₂ : Prop} (h₁ : p₁ = p₂) (h₂ : p₂ → q₁ = q₂) : (p₁ → q₁) = (p₂ → q₂)",
"start": [
45,
1
],
"end": [
46,
30
],
"kind": "commanddeclaration"
},
{
"full_name": "forall_congr",
"code": "theorem forall_congr {α : Sort u} {p q : α → Prop} (h : ∀ a, p a = q a) : (∀ a, p a) = (∀ a, q a)",
"start": [
48,
1
],
"end": [
49,
27
],
"kind": "commanddeclaration"
},
{
"full_name": "forall_prop_domain_congr",
"code": "theorem forall_prop_domain_congr {p₁ p₂ : Prop} {q₁ : p₁ → Prop} {q₂ : p₂ → Prop}\n (h₁ : p₁ = p₂)\n (h₂ : ∀ a : p₂, q₁ (h₁.substr a) = q₂ a)\n : (∀ a : p₁, q₁ a) = (∀ a : p₂, q₂ a)",
"start": [
51,
1
],
"end": [
55,
24
],
"kind": "commanddeclaration"
},
{
"full_name": "let_congr",
"code": "theorem let_congr {α : Sort u} {β : Sort v} {a a' : α} {b b' : α → β}\n (h₁ : a = a') (h₂ : ∀ x, b x = b' x) : (let x := a; b x) = (let x := a'; b' x)",
"start": [
57,
1
],
"end": [
59,
34
],
"kind": "commanddeclaration"
},
{
"full_name": "let_val_congr",
"code": "theorem let_val_congr {α : Sort u} {β : Sort v} {a a' : α}\n (b : α → β) (h : a = a') : (let x := a; b x) = (let x := a'; b x)",
"start": [
61,
1
],
"end": [
62,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "let_body_congr",
"code": "theorem let_body_congr {α : Sort u} {β : α → Sort v} {b b' : (a : α) → β a}\n (a : α) (h : ∀ x, b x = b' x) : (let x := a; b x) = (let x := a; b' x)",
"start": [
64,
1
],
"end": [
66,
28
],
"kind": "commanddeclaration"
},
{
"full_name": "ite_congr",
"code": "@[congr]\ntheorem ite_congr {x y u v : α} {s : Decidable b} [Decidable c]\n (h₁ : b = c) (h₂ : c → x = u) (h₃ : ¬ c → y = v) : ite b x y = ite c u v",
"start": [
68,
1
],
"end": [
73,
63
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.mpr_prop",
"code": "theorem Eq.mpr_prop {p q : Prop} (h₁ : p = q) (h₂ : q) : p",
"start": [
75,
1
],
"end": [
75,
72
],
"kind": "commanddeclaration"
},
{
"full_name": "Eq.mpr_not",
"code": "theorem Eq.mpr_not {p q : Prop} (h₁ : p = q) (h₂ : ¬q) : ¬p",
"start": [
76,
1
],
"end": [
76,
72
],
"kind": "commanddeclaration"
},
{
"full_name": "dite_congr",
"code": "@[congr]\ntheorem dite_congr {_ : Decidable b} [Decidable c]\n {x : b → α} {u : c → α} {y : ¬b → α} {v : ¬c → α}\n (h₁ : b = c)\n (h₂ : (h : c) → x (h₁.mpr_prop h) = u h)\n (h₃ : (h : ¬c) → y (h₁.mpr_not h) = v h) :\n dite b x y = dite c u v",
"start": [
78,
1
],
"end": [
87,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "ne_eq",
"code": "@[simp] theorem ne_eq (a b : α) : (a ≠ b) = ¬(a = b)",
"start": [
89,
1
],
"end": [
89,
60
],
"kind": "commanddeclaration"
},
{
"full_name": "ite_true",
"code": "@[simp] theorem ite_true (a b : α) : (if True then a else b) = a",
"start": [
91,
1
],
"end": [
91,
72
],
"kind": "commanddeclaration"
},
{
"full_name": "ite_false",
"code": "@[simp] theorem ite_false (a b : α) : (if False then a else b) = b",
"start": [
92,
1
],
"end": [
92,
74
],
"kind": "commanddeclaration"
},
{
"full_name": "dite_true",
"code": "@[simp] theorem dite_true {α : Sort u} {t : True → α} {e : ¬ True → α} : (dite True t e) = t True.intro",
"start": [
93,
1
],
"end": [
93,
111
],
"kind": "commanddeclaration"
},
{
"full_name": "dite_false",
"code": "@[simp] theorem dite_false {α : Sort u} {t : False → α} {e : ¬ False → α} : (dite False t e) = e not_false",
"start": [
94,
1
],
"end": [
94,
114
],
"kind": "commanddeclaration"
},
{
"full_name": "ite_cond_eq_true",
"code": "theorem ite_cond_eq_true {α : Sort u} {c : Prop} {_ : Decidable c} (a b : α) (h : c = True) : (if c then a else b) = a",
"start": [
97,
1
],
"end": [
97,
134
],
"kind": "commanddeclaration"
},
{
"full_name": "ite_cond_eq_false",
"code": "theorem ite_cond_eq_false {α : Sort u} {c : Prop} {_ : Decidable c} (a b : α) (h : c = False) : (if c then a else b) = b",
"start": [
98,
1
],
"end": [
98,
136
],
"kind": "commanddeclaration"
},
{
"full_name": "dite_cond_eq_true",
"code": "theorem dite_cond_eq_true {α : Sort u} {c : Prop} {_ : Decidable c} {t : c → α} {e : ¬ c → α} (h : c = True) : (dite c t e) = t (of_eq_true h)",
"start": [
99,
1
],
"end": [
99,
158
],
"kind": "commanddeclaration"
},
{
"full_name": "dite_cond_eq_false",
"code": "theorem dite_cond_eq_false {α : Sort u} {c : Prop} {_ : Decidable c} {t : c → α} {e : ¬ c → α} (h : c = False) : (dite c t e) = e (of_eq_false h)",
"start": [
100,
1
],
"end": [
100,
161
],
"kind": "commanddeclaration"
},
{
"full_name": "ite_self",
"code": "@[simp] theorem ite_self {α : Sort u} {c : Prop} {d : Decidable c} (a : α) : ite c a a = a",
"start": [
102,
1
],
"end": [
102,
113
],
"kind": "commanddeclaration"
},
{
"full_name": "and_true",
"code": "@[simp] theorem and_true (p : Prop) : (p ∧ True) = p",
"start": [
104,
1
],
"end": [
104,
88
],
"kind": "commanddeclaration"
},
{
"full_name": "true_and",
"code": "@[simp] theorem true_and (p : Prop) : (True ∧ p) = p",
"start": [
105,
1
],
"end": [
105,
88
],
"kind": "commanddeclaration"
},
{
"full_name": "and_false",
"code": "@[simp] theorem and_false (p : Prop) : (p ∧ False) = False",
"start": [
109,
1
],
"end": [
109,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "false_and",
"code": "@[simp] theorem false_and (p : Prop) : (False ∧ p) = False",
"start": [
110,
1
],
"end": [
110,
77
],
"kind": "commanddeclaration"
},
{
"full_name": "and_self",
"code": "@[simp] theorem and_self (p : Prop) : (p ∧ p) = p",
"start": [
111,
1
],
"end": [
111,
89
],
"kind": "commanddeclaration"
},
{
"full_name": "and_not_self",
"code": "@[simp] theorem and_not_self : ¬(a ∧ ¬a)",
"start": [
113,
1
],
"end": [
113,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "not_and_self",
"code": "@[simp] theorem not_and_self : ¬(¬a ∧ a)",
"start": [
114,
1
],
"end": [
114,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "and_imp",
"code": "@[simp] theorem and_imp : (a ∧ b → c) ↔ (a → b → c)",
"start": [
115,
1
],
"end": [
115,
110
],
"kind": "commanddeclaration"
},
{
"full_name": "not_and",
"code": "@[simp] theorem not_and : ¬(a ∧ b) ↔ (a → ¬b)",
"start": [
116,
1
],
"end": [
116,
57
],
"kind": "commanddeclaration"
},
{
"full_name": "or_self",
"code": "@[simp] theorem or_self (p : Prop) : (p ∨ p) = p",
"start": [
117,
1
],
"end": [
117,
95
],
"kind": "commanddeclaration"
},
{
"full_name": "or_true",
"code": "@[simp] theorem or_true (p : Prop) : (p ∨ True) = True",
"start": [
119,
1
],
"end": [
119,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "true_or",
"code": "@[simp] theorem true_or (p : Prop) : (True ∨ p) = True",
"start": [
120,
1
],
"end": [
120,
81
],
"kind": "commanddeclaration"
},
{
"full_name": "or_false",
"code": "@[simp] theorem or_false (p : Prop) : (p ∨ False) = p",
"start": [
121,
1
],
"end": [
121,
91
],
"kind": "commanddeclaration"
},
{
"full_name": "false_or",
"code": "@[simp] theorem false_or (p : Prop) : (False ∨ p) = p",
"start": [
122,
1
],
"end": [
122,
91
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_self",
"code": "@[simp] theorem iff_self (p : Prop) : (p ↔ p) = True",
"start": [
126,
1
],
"end": [
126,
69
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_true",
"code": "@[simp] theorem iff_true (p : Prop) : (p ↔ True) = p",
"start": [
127,
1
],
"end": [
127,
121
],
"kind": "commanddeclaration"
},
{
"full_name": "true_iff",
"code": "@[simp] theorem true_iff (p : Prop) : (True ↔ p) = p",
"start": [
128,
1
],
"end": [
128,
121
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_false",
"code": "@[simp] theorem iff_false (p : Prop) : (p ↔ False) = ¬p",
"start": [
129,
1
],
"end": [
129,
94
],
"kind": "commanddeclaration"
},
{
"full_name": "false_iff",
"code": "@[simp] theorem false_iff (p : Prop) : (False ↔ p) = ¬p",
"start": [
130,
1
],
"end": [
130,
94
],
"kind": "commanddeclaration"
},
{
"full_name": "false_implies",
"code": "@[simp] theorem false_implies (p : Prop) : (False → p) = True",
"start": [
131,
1
],
"end": [
131,
84
],
"kind": "commanddeclaration"
},
{
"full_name": "implies_true",
"code": "@[simp] theorem implies_true (α : Sort u) : (α → True) = True",
"start": [
132,
1
],
"end": [
132,
90
],
"kind": "commanddeclaration"
},
{
"full_name": "true_implies",
"code": "@[simp] theorem true_implies (p : Prop) : (True → p) = p",
"start": [
133,
1
],
"end": [
133,
96
],
"kind": "commanddeclaration"
},
{
"full_name": "not_false_eq_true",
"code": "@[simp] theorem not_false_eq_true : (¬ False) = True",
"start": [
134,
1
],
"end": [
134,
75
],
"kind": "commanddeclaration"
},
{
"full_name": "not_true_eq_false",
"code": "@[simp] theorem not_true_eq_false : (¬ True) = False",
"start": [
135,
1
],
"end": [
135,
66
],
"kind": "commanddeclaration"
},
{
"full_name": "not_iff_self",
"code": "@[simp] theorem not_iff_self : ¬(¬a ↔ a)",
"start": [
137,
1
],
"end": [
137,
68
],
"kind": "commanddeclaration"
},
{
"full_name": "and_congr_right",
"code": "theorem and_congr_right (h : a → (b ↔ c)) : a ∧ b ↔ a ∧ c",
"start": [
142,
1
],
"end": [
144,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "and_congr_left",
"code": "theorem and_congr_left (h : c → (a ↔ b)) : a ∧ c ↔ b ∧ c",
"start": [
145,
1
],
"end": [
146,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "and_assoc",
"code": "theorem and_assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c)",
"start": [
148,
1
],
"end": [
150,
49
],
"kind": "commanddeclaration"
},
{
"full_name": "and_self_left",
"code": "@[simp] theorem and_self_left : a ∧ (a ∧ b) ↔ a ∧ b",
"start": [
153,
1
],
"end": [
153,
93
],
"kind": "commanddeclaration"
},
{
"full_name": "and_self_right",
"code": "@[simp] theorem and_self_right : (a ∧ b) ∧ b ↔ a ∧ b",
"start": [
154,
1
],
"end": [
154,
93
],
"kind": "commanddeclaration"
},
{
"full_name": "and_congr_right_iff",
"code": "@[simp] theorem and_congr_right_iff : (a ∧ b ↔ a ∧ c) ↔ (a → (b ↔ c))",
"start": [
156,
1
],
"end": [
157,
69
],
"kind": "commanddeclaration"
},
{
"full_name": "and_congr_left_iff",
"code": "@[simp] theorem and_congr_left_iff : (a ∧ c ↔ b ∧ c) ↔ c → (a ↔ b)",
"start": [
158,
1
],
"end": [
159,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "and_iff_left_of_imp",
"code": "theorem and_iff_left_of_imp (h : a → b) : (a ∧ b) ↔ a",
"start": [
161,
1
],
"end": [
161,
109
],
"kind": "commanddeclaration"
},
{
"full_name": "and_iff_right_of_imp",
"code": "theorem and_iff_right_of_imp (h : b → a) : (a ∧ b) ↔ b",
"start": [
162,
1
],
"end": [
162,
101
],
"kind": "commanddeclaration"
},
{
"full_name": "and_iff_left_iff_imp",
"code": "@[simp] theorem and_iff_left_iff_imp : ((a ∧ b) ↔ a) ↔ (a → b)",
"start": [
164,
1
],
"end": [
164,
117
],
"kind": "commanddeclaration"
},
{
"full_name": "and_iff_right_iff_imp",
"code": "@[simp] theorem and_iff_right_iff_imp : ((a ∧ b) ↔ b) ↔ (b → a)",
"start": [
165,
1
],
"end": [
165,
117
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_self_and",
"code": "@[simp] theorem iff_self_and : (p ↔ p ∧ q) ↔ (p → q)",
"start": [
167,
1
],
"end": [
167,
98
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_and_self",
"code": "@[simp] theorem iff_and_self : (p ↔ q ∧ p) ↔ (p → q)",
"start": [
168,
1
],
"end": [
168,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.imp",
"code": "theorem Or.imp (f : a → c) (g : b → d) (h : a ∨ b) : c ∨ d",
"start": [
172,
1
],
"end": [
172,
89
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.imp_left",
"code": "theorem Or.imp_left (f : a → b) : a ∨ c → b ∨ c",
"start": [
173,
1
],
"end": [
173,
61
],
"kind": "commanddeclaration"
},
{
"full_name": "Or.imp_right",
"code": "theorem Or.imp_right (f : b → c) : a ∨ b → a ∨ c",
"start": [
174,
1
],
"end": [
174,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "or_assoc",
"code": "theorem or_assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c)",
"start": [
176,
1
],
"end": [
178,
50
],
"kind": "commanddeclaration"
},
{
"full_name": "or_self_left",
"code": "@[simp] theorem or_self_left : a ∨ (a ∨ b) ↔ a ∨ b",
"start": [
181,
1
],
"end": [
181,
90
],
"kind": "commanddeclaration"
},
{
"full_name": "or_self_right",
"code": "@[simp] theorem or_self_right : (a ∨ b) ∨ b ↔ a ∨ b",
"start": [
182,
1
],
"end": [
182,
90
],
"kind": "commanddeclaration"
},
{
"full_name": "or_iff_right_of_imp",
"code": "theorem or_iff_right_of_imp (ha : a → b) : (a ∨ b) ↔ b",
"start": [
184,
1
],
"end": [
184,
88
],
"kind": "commanddeclaration"
},
{
"full_name": "or_iff_left_of_imp",
"code": "theorem or_iff_left_of_imp (hb : b → a) : (a ∨ b) ↔ a",
"start": [
185,
1
],
"end": [
185,
89
],
"kind": "commanddeclaration"
},
{
"full_name": "or_iff_left_iff_imp",
"code": "@[simp] theorem or_iff_left_iff_imp : (a ∨ b ↔ a) ↔ (b → a)",
"start": [
187,
1
],
"end": [
187,
109
],
"kind": "commanddeclaration"
},
{
"full_name": "or_iff_right_iff_imp",
"code": "@[simp] theorem or_iff_right_iff_imp : (a ∨ b ↔ b) ↔ (a → b)",
"start": [
188,
1
],
"end": [
188,
101
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_self_or",
"code": "@[simp] theorem iff_self_or (a b : Prop) : (a ↔ a ∨ b) ↔ (b → a)",
"start": [
190,
1
],
"end": [
191,
53
],
"kind": "commanddeclaration"
},
{
"full_name": "iff_or_self",
"code": "@[simp] theorem iff_or_self (a b : Prop) : (b ↔ a ∨ b) ↔ (a → b)",
"start": [
192,
1
],
"end": [
193,
54
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.or_false",
"code": "@[simp] theorem Bool.or_false (b : Bool) : (b || false) = b",
"start": [
197,
1
],
"end": [
197,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.or_true",
"code": "@[simp] theorem Bool.or_true (b : Bool) : (b || true) = true",
"start": [
198,
1
],
"end": [
198,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.false_or",
"code": "@[simp] theorem Bool.false_or (b : Bool) : (false || b) = b",
"start": [
199,
1
],
"end": [
199,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.true_or",
"code": "@[simp] theorem Bool.true_or (b : Bool) : (true || b) = true",
"start": [
203,
1
],
"end": [
203,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.or_self",
"code": "@[simp] theorem Bool.or_self (b : Bool) : (b || b) = b",
"start": [
204,
1
],
"end": [
204,
83
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.or_eq_true",
"code": "@[simp] theorem Bool.or_eq_true (a b : Bool) : ((a || b) = true) = (a = true ∨ b = true)",
"start": [
206,
1
],
"end": [
207,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.and_false",
"code": "@[simp] theorem Bool.and_false (b : Bool) : (b && false) = false",
"start": [
209,
1
],
"end": [
209,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.and_true",
"code": "@[simp] theorem Bool.and_true (b : Bool) : (b && true) = b",
"start": [
210,
1
],
"end": [
210,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.false_and",
"code": "@[simp] theorem Bool.false_and (b : Bool) : (false && b) = false",
"start": [
211,
1
],
"end": [
211,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.true_and",
"code": "@[simp] theorem Bool.true_and (b : Bool) : (true && b) = b",
"start": [
212,
1
],
"end": [
212,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.and_self",
"code": "@[simp] theorem Bool.and_self (b : Bool) : (b && b) = b",
"start": [
216,
1
],
"end": [
216,
87
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.and_eq_true",
"code": "@[simp] theorem Bool.and_eq_true (a b : Bool) : ((a && b) = true) = (a = true ∧ b = true)",
"start": [
218,
1
],
"end": [
219,
33
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.and_assoc",
"code": "theorem Bool.and_assoc (a b c : Bool) : (a && b && c) = (a && (b && c))",
"start": [
221,
1
],
"end": [
222,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.or_assoc",
"code": "theorem Bool.or_assoc (a b c : Bool) : (a || b || c) = (a || (b || c))",
"start": [
224,
1
],
"end": [
225,
45
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_not",
"code": "@[simp] theorem Bool.not_not (b : Bool) : (!!b) = b",
"start": [
228,
1
],
"end": [
228,
74
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_true",
"code": "@[simp] theorem Bool.not_true : (!true) = false",
"start": [
229,
1
],
"end": [
229,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_false",
"code": "@[simp] theorem Bool.not_false : (!false) = true",
"start": [
230,
1
],
"end": [
230,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_beq_true",
"code": "@[simp] theorem Bool.not_beq_true (b : Bool) : (!(b == true)) = (b == false)",
"start": [
231,
1
],
"end": [
231,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_beq_false",
"code": "@[simp] theorem Bool.not_beq_false (b : Bool) : (!(b == false)) = (b == true)",
"start": [
232,
1
],
"end": [
232,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_eq_true'",
"code": "@[simp] theorem Bool.not_eq_true' (b : Bool) : ((!b) = true) = (b = false)",
"start": [
233,
1
],
"end": [
233,
99
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_eq_false'",
"code": "@[simp] theorem Bool.not_eq_false' (b : Bool) : ((!b) = false) = (b = true)",
"start": [
234,
1
],
"end": [
234,
99
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.beq_to_eq",
"code": "@[simp] theorem Bool.beq_to_eq (a b : Bool) :\n (a == b) = (a = b)",
"start": [
236,
1
],
"end": [
237,
58
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_beq_to_not_eq",
"code": "@[simp] theorem Bool.not_beq_to_not_eq (a b : Bool) :\n (!(a == b)) = ¬(a = b)",
"start": [
238,
1
],
"end": [
239,
62
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_eq_true",
"code": "@[simp] theorem Bool.not_eq_true (b : Bool) : (¬(b = true)) = (b = false)",
"start": [
241,
1
],
"end": [
241,
99
],
"kind": "commanddeclaration"
},
{
"full_name": "Bool.not_eq_false",
"code": "@[simp] theorem Bool.not_eq_false (b : Bool) : (¬(b = false)) = (b = true)",
"start": [
242,
1
],
"end": [
242,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_eq_true_eq",
"code": "@[simp] theorem decide_eq_true_eq [Decidable p] : (decide p = true) = p",
"start": [
244,
1
],
"end": [
245,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_not",
"code": "@[simp] theorem decide_not [g : Decidable p] [h : Decidable (Not p)] : decide (Not p) = !(decide p)",
"start": [
246,
1
],
"end": [
247,
44
],
"kind": "commanddeclaration"
},
{
"full_name": "not_decide_eq_true",
"code": "@[simp] theorem not_decide_eq_true [h : Decidable p] : ((!decide p) = true) = ¬ p",
"start": [
248,
1
],
"end": [
249,
47
],
"kind": "commanddeclaration"
},
{
"full_name": "heq_eq_eq",
"code": "@[simp] theorem heq_eq_eq (a b : α) : HEq a b = (a = b)",
"start": [
251,
1
],
"end": [
251,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "cond_true",
"code": "@[simp] theorem cond_true (a b : α) : cond true a b = a",
"start": [
253,
1
],
"end": [
253,
63
],
"kind": "commanddeclaration"
},
{
"full_name": "cond_false",
"code": "@[simp] theorem cond_false (a b : α) : cond false a b = b",
"start": [
254,
1
],
"end": [
254,
65
],
"kind": "commanddeclaration"
},
{
"full_name": "beq_self_eq_true",
"code": "@[simp] theorem beq_self_eq_true [BEq α] [LawfulBEq α] (a : α) : (a == a) = true",
"start": [
256,
1
],
"end": [
256,
98
],
"kind": "commanddeclaration"
},
{
"full_name": "beq_self_eq_true'",
"code": "@[simp] theorem beq_self_eq_true' [DecidableEq α] (a : α) : (a == a) = true",
"start": [
257,
1
],
"end": [
257,
97
],
"kind": "commanddeclaration"
},
{
"full_name": "bne_self_eq_false",
"code": "@[simp] theorem bne_self_eq_false [BEq α] [LawfulBEq α] (a : α) : (a != a) = false",
"start": [
259,
1
],
"end": [
259,
100
],
"kind": "commanddeclaration"
},
{
"full_name": "bne_self_eq_false'",
"code": "@[simp] theorem bne_self_eq_false' [DecidableEq α] (a : α) : (a != a) = false",
"start": [
260,
1
],
"end": [
260,
95
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_False",
"code": "@[simp] theorem decide_False : decide False = false",
"start": [
262,
1
],
"end": [
262,
59
],
"kind": "commanddeclaration"
},
{
"full_name": "decide_True",
"code": "@[simp] theorem decide_True : decide True = true",
"start": [
263,
1
],
"end": [
263,
58
],
"kind": "commanddeclaration"
},
{
"full_name": "bne_iff_ne",
"code": "@[simp] theorem bne_iff_ne [BEq α] [LawfulBEq α] (a b : α) : a != b ↔ a ≠ b",
"start": [
265,
1
],
"end": [
266,
56
],
"kind": "commanddeclaration"
},
{
"full_name": "beq_eq_false_iff_ne",
"code": "@[simp] theorem beq_eq_false_iff_ne [BEq α] [LawfulBEq α]\n (a b : α) : (a == b) = false ↔ a ≠ b",
"start": [
276,
1
],
"end": [
279,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "bne_eq_false_iff_eq",
"code": "@[simp] theorem bne_eq_false_iff_eq [BEq α] [LawfulBEq α] (a b : α) :\n (a != b) = false ↔ a = b",
"start": [
281,
1
],
"end": [
284,
26
],
"kind": "commanddeclaration"
},
{
"full_name": "Nat.le_zero_eq",
"code": "@[simp] theorem Nat.le_zero_eq (a : Nat) : (a ≤ 0) = (a = 0)",
"start": [
288,
1
],
"end": [
289,
84
],
"kind": "commanddeclaration"
}
] |
.lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean | [
".lake/packages/lean4/src/lean/Init/SimpLemmas.lean"
] | [{"full_name":"Nat.recCompiled","code":"private def recCompiled {motive : Nat → Sort u} (zero : mo(...TRUNCATED) |
.lake/packages/lean4/src/lean/Init/MetaTypes.lean | [
".lake/packages/lean4/src/lean/Init/Core.lean"
] | [{"full_name":"Lean.NameGenerator","code":"structure NameGenerator where\n namePrefix : Name := `_u(...TRUNCATED) |
.lake/packages/lean4/src/lean/Init/WF.lean | [".lake/packages/lean4/src/lean/Init/Data/Nat/Basic.lean",".lake/packages/lean4/src/lean/Init/SizeOf(...TRUNCATED) | [{"full_name":"Acc","code":"inductive Acc {α : Sort u} (r : α → α → Prop) : α → Prop where(...TRUNCATED) |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
- Downloads last month
- 0