Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
French
Size:
10K - 100K
License:
dataset_info: | |
features: | |
- name: text | |
dtype: string | |
- name: title_main | |
dtype: string | |
- name: id_sub | |
dtype: string | |
- name: url_sourcepage | |
dtype: string | |
- name: date_publication | |
dtype: string | |
- name: hash | |
dtype: string | |
- name: lemone_pro_embeddings | |
sequence: float64 | |
splits: | |
- name: train | |
num_bytes: 187013397 | |
num_examples: 16073 | |
download_size: 119486532 | |
dataset_size: 187013397 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
license: apache-2.0 | |
task_categories: | |
- question-answering | |
language: | |
- fr | |
tags: | |
- tax | |
- legal | |
- fiscalite | |
- droit | |
- taxation | |
pretty_name: Lemone-embeded dataset for French tax RAG over legal documents | |
size_categories: | |
- 10K<n<100K | |
## Dataset Description | |
- **Repository:** https://huggingface.co./datasets/louisbrulenaudet/lemone-docs-embedded | |
- **Point of Contact:** [Louis Brulé Naudet](mailto:[email protected]) | |
<img src="assets/thumbnail.webp"> | |
# Lemone-embedded, pre-built embeddings dataset for French taxation. | |
<div class="not-prose bg-gradient-to-r from-gray-50-to-white text-gray-900 border" style="border-radius: 8px; padding: 0.5rem 1rem;"> | |
<p>This database presents the embeddings generated by the Lemone-embed-pro model and aims at a large-scale distribution of the model even for the GPU-poor.</p> | |
</div> | |
This sentence transformers model, specifically designed for French taxation, has been fine-tuned on a dataset comprising 43 million tokens, integrating a blend of semi-synthetic and fully synthetic data generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation. | |
The model is tailored to meet the specific demands of information retrieval across large-scale tax-related corpora, supporting the implementation of production-ready Retrieval-Augmented Generation (RAG) applications. Its primary purpose is to enhance the efficiency and accuracy of legal processes in the taxation domain, with an emphasis on delivering consistent performance in real-world settings, while also contributing to advancements in legal natural language processing research. | |
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. | |
## Usage with ChromaDB | |
We recommend integration via a vector-store to produce an optimal RAG pipeline. Here's a code extract for producing such a database with ChromaDB: | |
```python | |
import chromadb | |
import polars as pl | |
from chromadb.config import Settings | |
from chromadb.utils import embedding_functions | |
from torch.cuda import is_available | |
client = chromadb.PersistentClient( | |
path="./chroma.db", | |
settings=Settings(anonymized_telemetry=False) | |
) | |
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction( | |
model_name="louisbrulenaudet/lemone-embed-pro", | |
device="cuda" if is_available() else "cpu", | |
trust_remote_code=True | |
) | |
collection = client.get_or_create_collection( | |
name="tax", | |
embedding_function=sentence_transformer_ef | |
) | |
dataframe = pl.scan_parquet('hf://datasets/louisbrulenaudet/lemone-docs-embedded/data/train-00000-of-00001.parquet').filter( | |
pl.col( | |
"text" | |
).is_not_null() | |
).collect() | |
collection.add( | |
embeddings=dataframe["lemone_pro_embeddings"].to_list(), | |
documents=dataframe["text"].to_list(), | |
metadatas=dataframe.drop( | |
[ | |
"lemone_pro_embeddings", | |
"text" | |
] | |
).to_dicts(), | |
ids=[ | |
str(i) for i in range(0, dataframe.shape[0]) | |
] | |
) | |
``` | |
Here is a code for reproduction of this dataset: | |
```python | |
import hashlib | |
from datetime import datetime | |
from typing import ( | |
IO, | |
TYPE_CHECKING, | |
Any, | |
Dict, | |
List, | |
Type, | |
Tuple, | |
Union, | |
Mapping, | |
TypeVar, | |
Callable, | |
Optional, | |
Sequence, | |
) | |
import chromadb | |
import polars as pl | |
from chromadb.config import Settings | |
from chromadb.utils import embedding_functions | |
from torch.cuda import is_available | |
client = chromadb.Client( | |
settings=Settings(anonymized_telemetry=False) | |
) | |
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction( | |
model_name="louisbrulenaudet/lemone-embed-pro", | |
device="cuda" if is_available() else "cpu", | |
trust_remote_code=True | |
) | |
collection = client.get_or_create_collection( | |
name="tax", | |
embedding_function=sentence_transformer_ef | |
) | |
bofip_dataframe = pl.scan_parquet( | |
"hf://datasets/louisbrulenaudet/bofip/data/train-00000-of-00001.parquet" | |
).with_columns( | |
[ | |
( | |
pl.lit("Bulletin officiel des finances publiques - impôts").alias( | |
"title_main" | |
) | |
), | |
( | |
pl.col("debut_de_validite") | |
.str.strptime(pl.Date, format="%Y-%m-%d") | |
.dt.strftime("%Y-%m-%d 00:00:00") | |
).alias("date_publication"), | |
( | |
pl.col("contenu") | |
.map_elements(lambda x: hashlib.sha256(str(x).encode()).hexdigest(), return_dtype=pl.Utf8) | |
.alias("hash") | |
) | |
] | |
).rename( | |
{ | |
"contenu": "text", | |
"permalien": "url_sourcepage", | |
"identifiant_juridique": "id_sub", | |
} | |
).select( | |
[ | |
"text", | |
"title_main", | |
"id_sub", | |
"url_sourcepage", | |
"date_publication", | |
"hash" | |
] | |
) | |
books: List[str] = [ | |
"hf://datasets/louisbrulenaudet/code-douanes/data/train-00000-of-00001.parquet", | |
"hf://datasets/louisbrulenaudet/code-impots/data/train-00000-of-00001.parquet", | |
"hf://datasets/louisbrulenaudet/code-impots-annexe-i/data/train-00000-of-00001.parquet", | |
"hf://datasets/louisbrulenaudet/code-impots-annexe-ii/data/train-00000-of-00001.parquet", | |
"hf://datasets/louisbrulenaudet/code-impots-annexe-iii/data/train-00000-of-00001.parquet", | |
"hf://datasets/louisbrulenaudet/code-impots-annexe-iv/data/train-00000-of-00001.parquet", | |
"hf://datasets/louisbrulenaudet/code-impositions-biens-services/data/train-00000-of-00001.parquet", | |
"hf://datasets/louisbrulenaudet/livre-procedures-fiscales/data/train-00000-of-00001.parquet" | |
] | |
legi_dataframe = pl.concat( | |
[ | |
pl.scan_parquet( | |
book | |
) for book in books | |
] | |
).with_columns( | |
[ | |
( | |
pl.lit("https://www.legifrance.gouv.fr/codes/article_lc/") | |
.add(pl.col("id")) | |
.alias("url_sourcepage") | |
), | |
( | |
pl.col("dateDebut") | |
.cast(pl.Int64) | |
.map_elements( | |
lambda x: datetime.fromtimestamp(x / 1000).strftime("%Y-%m-%d %H:%M:%S"), | |
return_dtype=pl.Utf8 | |
) | |
.alias("date_publication") | |
), | |
( | |
pl.col("texte") | |
.map_elements(lambda x: hashlib.sha256(str(x).encode()).hexdigest(), return_dtype=pl.Utf8) | |
.alias("hash") | |
) | |
] | |
).rename( | |
{ | |
"texte": "text", | |
"num": "id_sub", | |
} | |
).select( | |
[ | |
"text", | |
"title_main", | |
"id_sub", | |
"url_sourcepage", | |
"date_publication", | |
"hash" | |
] | |
) | |
print("Starting embeddings production...") | |
dataframe = pl.concat( | |
[ | |
bofip_dataframe, | |
legi_dataframe | |
] | |
).filter( | |
pl.col( | |
"text" | |
).is_not_null() | |
).with_columns( | |
pl.col("text").map_elements( | |
lambda x: sentence_transformer_ef( | |
[x] | |
)[0].tolist(), | |
return_dtype=pl.List(pl.Float64) | |
).alias("lemone_pro_embeddings") | |
).collect() | |
``` | |
## Citation | |
If you use this code in your research, please use the following BibTeX entry. | |
```BibTeX | |
@misc{louisbrulenaudet2024, | |
author = {Louis Brulé Naudet}, | |
title = {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation}, | |
year = {2024} | |
howpublished = {\url{https://huggingface.co./datasets/louisbrulenaudet/lemone-embed-pro}}, | |
} | |
``` | |
## Feedback | |
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]). |