Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
French
Size:
10K - 100K
License:
File size: 8,219 Bytes
a1d721b f10776a a1d721b f10776a 06822f9 8e4280e 06822f9 8e4280e 06822f9 8e4280e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
---
dataset_info:
features:
- name: text
dtype: string
- name: title_main
dtype: string
- name: id_sub
dtype: string
- name: url_sourcepage
dtype: string
- name: date_publication
dtype: string
- name: hash
dtype: string
- name: lemone_pro_embeddings
sequence: float64
splits:
- name: train
num_bytes: 187013397
num_examples: 16073
download_size: 119486532
dataset_size: 187013397
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
task_categories:
- question-answering
language:
- fr
tags:
- tax
- legal
- fiscalite
- droit
- taxation
pretty_name: Lemone-embeded dataset for French tax RAG over legal documents
size_categories:
- 10K<n<100K
---
## Dataset Description
- **Repository:** https://huggingface.co./datasets/louisbrulenaudet/lemone-docs-embedded
- **Point of Contact:** [Louis Brulé Naudet](mailto:[email protected])
<img src="assets/thumbnail.webp">
# Lemone-embedded, pre-built embeddings dataset for French taxation.
<div class="not-prose bg-gradient-to-r from-gray-50-to-white text-gray-900 border" style="border-radius: 8px; padding: 0.5rem 1rem;">
<p>This database presents the embeddings generated by the Lemone-embed-pro model and aims at a large-scale distribution of the model even for the GPU-poor.</p>
</div>
This sentence transformers model, specifically designed for French taxation, has been fine-tuned on a dataset comprising 43 million tokens, integrating a blend of semi-synthetic and fully synthetic data generated by GPT-4 Turbo and Llama 3.1 70B, which have been further refined through evol-instruction tuning and manual curation.
The model is tailored to meet the specific demands of information retrieval across large-scale tax-related corpora, supporting the implementation of production-ready Retrieval-Augmented Generation (RAG) applications. Its primary purpose is to enhance the efficiency and accuracy of legal processes in the taxation domain, with an emphasis on delivering consistent performance in real-world settings, while also contributing to advancements in legal natural language processing research.
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Usage with ChromaDB
We recommend integration via a vector-store to produce an optimal RAG pipeline. Here's a code extract for producing such a database with ChromaDB:
```python
import chromadb
import polars as pl
from chromadb.config import Settings
from chromadb.utils import embedding_functions
from torch.cuda import is_available
client = chromadb.PersistentClient(
path="./chroma.db",
settings=Settings(anonymized_telemetry=False)
)
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="louisbrulenaudet/lemone-embed-pro",
device="cuda" if is_available() else "cpu",
trust_remote_code=True
)
collection = client.get_or_create_collection(
name="tax",
embedding_function=sentence_transformer_ef
)
dataframe = pl.scan_parquet('hf://datasets/louisbrulenaudet/lemone-docs-embedded/data/train-00000-of-00001.parquet').filter(
pl.col(
"text"
).is_not_null()
).collect()
collection.add(
embeddings=dataframe["lemone_pro_embeddings"].to_list(),
documents=dataframe["text"].to_list(),
metadatas=dataframe.drop(
[
"lemone_pro_embeddings",
"text"
]
).to_dicts(),
ids=[
str(i) for i in range(0, dataframe.shape[0])
]
)
```
Here is a code for reproduction of this dataset:
```python
import hashlib
from datetime import datetime
from typing import (
IO,
TYPE_CHECKING,
Any,
Dict,
List,
Type,
Tuple,
Union,
Mapping,
TypeVar,
Callable,
Optional,
Sequence,
)
import chromadb
import polars as pl
from chromadb.config import Settings
from chromadb.utils import embedding_functions
from torch.cuda import is_available
client = chromadb.Client(
settings=Settings(anonymized_telemetry=False)
)
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="louisbrulenaudet/lemone-embed-pro",
device="cuda" if is_available() else "cpu",
trust_remote_code=True
)
collection = client.get_or_create_collection(
name="tax",
embedding_function=sentence_transformer_ef
)
bofip_dataframe = pl.scan_parquet(
"hf://datasets/louisbrulenaudet/bofip/data/train-00000-of-00001.parquet"
).with_columns(
[
(
pl.lit("Bulletin officiel des finances publiques - impôts").alias(
"title_main"
)
),
(
pl.col("debut_de_validite")
.str.strptime(pl.Date, format="%Y-%m-%d")
.dt.strftime("%Y-%m-%d 00:00:00")
).alias("date_publication"),
(
pl.col("contenu")
.map_elements(lambda x: hashlib.sha256(str(x).encode()).hexdigest(), return_dtype=pl.Utf8)
.alias("hash")
)
]
).rename(
{
"contenu": "text",
"permalien": "url_sourcepage",
"identifiant_juridique": "id_sub",
}
).select(
[
"text",
"title_main",
"id_sub",
"url_sourcepage",
"date_publication",
"hash"
]
)
books: List[str] = [
"hf://datasets/louisbrulenaudet/code-douanes/data/train-00000-of-00001.parquet",
"hf://datasets/louisbrulenaudet/code-impots/data/train-00000-of-00001.parquet",
"hf://datasets/louisbrulenaudet/code-impots-annexe-i/data/train-00000-of-00001.parquet",
"hf://datasets/louisbrulenaudet/code-impots-annexe-ii/data/train-00000-of-00001.parquet",
"hf://datasets/louisbrulenaudet/code-impots-annexe-iii/data/train-00000-of-00001.parquet",
"hf://datasets/louisbrulenaudet/code-impots-annexe-iv/data/train-00000-of-00001.parquet",
"hf://datasets/louisbrulenaudet/code-impositions-biens-services/data/train-00000-of-00001.parquet",
"hf://datasets/louisbrulenaudet/livre-procedures-fiscales/data/train-00000-of-00001.parquet"
]
legi_dataframe = pl.concat(
[
pl.scan_parquet(
book
) for book in books
]
).with_columns(
[
(
pl.lit("https://www.legifrance.gouv.fr/codes/article_lc/")
.add(pl.col("id"))
.alias("url_sourcepage")
),
(
pl.col("dateDebut")
.cast(pl.Int64)
.map_elements(
lambda x: datetime.fromtimestamp(x / 1000).strftime("%Y-%m-%d %H:%M:%S"),
return_dtype=pl.Utf8
)
.alias("date_publication")
),
(
pl.col("texte")
.map_elements(lambda x: hashlib.sha256(str(x).encode()).hexdigest(), return_dtype=pl.Utf8)
.alias("hash")
)
]
).rename(
{
"texte": "text",
"num": "id_sub",
}
).select(
[
"text",
"title_main",
"id_sub",
"url_sourcepage",
"date_publication",
"hash"
]
)
print("Starting embeddings production...")
dataframe = pl.concat(
[
bofip_dataframe,
legi_dataframe
]
).filter(
pl.col(
"text"
).is_not_null()
).with_columns(
pl.col("text").map_elements(
lambda x: sentence_transformer_ef(
[x]
)[0].tolist(),
return_dtype=pl.List(pl.Float64)
).alias("lemone_pro_embeddings")
).collect()
```
## Citation
If you use this code in your research, please use the following BibTeX entry.
```BibTeX
@misc{louisbrulenaudet2024,
author = {Louis Brulé Naudet},
title = {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation},
year = {2024}
howpublished = {\url{https://huggingface.co./datasets/louisbrulenaudet/lemone-embed-pro}},
}
```
## Feedback
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]). |