|
--- |
|
dataset_info: |
|
features: |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1929035 |
|
num_examples: 5000 |
|
- name: validation |
|
num_bytes: 1926717 |
|
num_examples: 5000 |
|
- name: test |
|
num_bytes: 1926477 |
|
num_examples: 5000 |
|
download_size: 5840409 |
|
dataset_size: 5782229 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
# Random ASCII Dataset |
|
|
|
This dataset contains random sequences of ASCII characters, with "train," "validation," and "test" splits, designed to simulate text-like structures using all printable ASCII characters. Each sequence consists of pseudo-randomly generated "words" of various lengths, separated by spaces to mimic natural language text. |
|
|
|
## Dataset Details |
|
|
|
- **Splits**: Train, Validation, and Test |
|
- **Number of sequences**: |
|
- Train: 5000 sequences |
|
- Validation: 5000 sequences |
|
- Test: 5000 sequences |
|
- **Sequence length**: 512 characters per sequence |
|
- **Character pool**: All printable ASCII characters, including letters, digits, punctuation, and whitespace. |
|
|
|
## Sample Usage |
|
|
|
To load this dataset in Python, you can use the Hugging Face `datasets` library: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("brando/random-ascii-dataset") |
|
|
|
# Access the train, validation, and test splits |
|
train_data = dataset["train"] |
|
val_data = dataset["validation"] |
|
test_data = dataset["test"] |
|
|
|
# Print a sample |
|
print(train_data[0]["text"]) |
|
``` |
|
|
|
# Example Data |
|
Below are examples of random sequences generated in this dataset: |
|
```python |
|
#Example 1: |
|
"!Q4$^V3w L@#12 Vd&$%4B+ (k#yFw! [7*9z" |
|
|
|
#Example 2: |
|
"T^&3xR f$xH&ty ^23M* qW@# Lm5&" |
|
|
|
#Example 3: |
|
"b7$W %&6Zn!!R xT&8N z#G m93T +%^0" |
|
``` |
|
|
|
# License |
|
|
|
This dataset is released under the Apache License 2.0. You are free to use, modify, and distribute this dataset under the terms of the Apache License. |
|
|
|
# Citation |
|
|
|
```bibtex |
|
@misc{miranda2021ultimateutils, |
|
title={Ultimate Utils - the Ultimate Utils Library for Machine Learning and Artificial Intelligence}, |
|
author={Brando Miranda}, |
|
year={2021}, |
|
url={https://github.com/brando90/ultimate-utils}, |
|
note={Available at: \url{https://www.ideals.illinois.edu/handle/2142/112797}}, |
|
abstract={Ultimate Utils is a comprehensive library providing utility functions and tools to facilitate efficient machine learning and AI research, including efficient tensor manipulations and gradient handling with methods such as `detach()` for creating gradient-free tensors.} |
|
} |
|
``` |
|
|
|
# Code that generate it |
|
|
|
```python |
|
#ref: https://chatgpt.com/c/671ff56a-563c-8001-afd5-94632fe63d67 |
|
import os |
|
import random |
|
import string |
|
from huggingface_hub import login |
|
from datasets import Dataset, DatasetDict |
|
|
|
# Function to load the Hugging Face API token from a file |
|
def load_token(file_path: str) -> str: |
|
"""Load API token from a specified file path.""" |
|
with open(os.path.expanduser(file_path)) as f: |
|
return f.read().strip() |
|
|
|
# Function to log in to Hugging Face using a token |
|
def login_to_huggingface(token: str) -> None: |
|
"""Authenticate with Hugging Face Hub.""" |
|
login(token=token) |
|
print("Login successful") |
|
|
|
# Function to generate a random word of a given length |
|
def generate_random_word(length: int, character_pool: str) -> str: |
|
"""Generate a random word of specified length from a character pool.""" |
|
return "".join(random.choice(character_pool) for _ in range(length)) |
|
|
|
# Function to generate a single random sentence with "words" of random lengths |
|
def generate_random_sentence(sequence_length: int, character_pool: str) -> str: |
|
"""Generate a random sentence of approximately sequence_length characters.""" |
|
words = [ |
|
generate_random_word(random.randint(3, 10), character_pool) |
|
for _ in range(sequence_length // 10) # Estimate number of words to fit length |
|
] |
|
sentence = " ".join(words) |
|
# print(f"Generated sentence length: {len(sentence)}\a") # Print length and sound alert |
|
return sentence |
|
|
|
# Function to create a dataset of random "sentences" |
|
def create_random_text_dataset(num_sequences: int, sequence_length: int, character_pool: str) -> Dataset: |
|
"""Create a dataset with random text sequences.""" |
|
data = { |
|
"text": [generate_random_sentence(sequence_length, character_pool) for _ in range(num_sequences)] |
|
} |
|
return Dataset.from_dict(data) |
|
|
|
# Main function to generate, inspect, and upload dataset with train, validation, and test splits |
|
def main() -> None: |
|
# Step 1: Load token and log in |
|
key_file_path: str = "/lfs/skampere1/0/brando9/keys/brandos_hf_token.txt" |
|
token: str = load_token(key_file_path) |
|
login_to_huggingface(token) |
|
|
|
# Step 2: Dataset parameters |
|
num_sequences_train: int = 5000 |
|
num_sequences_val: int = 5000 |
|
num_sequences_test: int = 5000 |
|
sequence_length: int = 512 |
|
character_pool: str = string.printable # All ASCII characters (letters, digits, punctuation, whitespace) |
|
|
|
# Step 3: Create datasets for each split |
|
train_dataset = create_random_text_dataset(num_sequences_train, sequence_length, character_pool) |
|
val_dataset = create_random_text_dataset(num_sequences_val, sequence_length, character_pool) |
|
test_dataset = create_random_text_dataset(num_sequences_test, sequence_length, character_pool) |
|
|
|
# Step 4: Combine into a DatasetDict with train, validation, and test splits |
|
dataset_dict = DatasetDict({ |
|
"train": train_dataset, |
|
"validation": val_dataset, |
|
"test": test_dataset |
|
}) |
|
|
|
# Step 5: Print a sample of the train dataset for verification |
|
print("Sample of train dataset:", train_dataset[:5]) |
|
|
|
# Step 6: Push the dataset to Hugging Face Hub |
|
dataset_name: str = "brando/random-ascii-dataset" |
|
dataset_dict.push_to_hub(dataset_name) |
|
print(f"Dataset uploaded to https://huggingface.co./datasets/{dataset_name}") |
|
|
|
# Run the main function |
|
if __name__ == "__main__": |
|
main() |
|
|
|
``` |