File size: 6,043 Bytes
ba655c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7339033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
dataset_info:
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 1929035
    num_examples: 5000
  - name: validation
    num_bytes: 1926717
    num_examples: 5000
  - name: test
    num_bytes: 1926477
    num_examples: 5000
  download_size: 5840409
  dataset_size: 5782229
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

# Random ASCII Dataset

This dataset contains random sequences of ASCII characters, with "train," "validation," and "test" splits, designed to simulate text-like structures using all printable ASCII characters. Each sequence consists of pseudo-randomly generated "words" of various lengths, separated by spaces to mimic natural language text.

## Dataset Details

- **Splits**: Train, Validation, and Test
- **Number of sequences**:
  - Train: 5000 sequences
  - Validation: 5000 sequences
  - Test: 5000 sequences
- **Sequence length**: 512 characters per sequence
- **Character pool**: All printable ASCII characters, including letters, digits, punctuation, and whitespace.

## Sample Usage

To load this dataset in Python, you can use the Hugging Face `datasets` library:

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("brando/random-ascii-dataset")

# Access the train, validation, and test splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]

# Print a sample
print(train_data[0]["text"])
```

# Example Data
Below are examples of random sequences generated in this dataset:
```python
#Example 1:
"!Q4$^V3w L@#12 Vd&$%4B+ (k#yFw! [7*9z"

#Example 2:
"T^&3xR f$xH&ty ^23M* qW@# Lm5&"

#Example 3:
"b7$W %&6Zn!!R xT&8N z#G m93T +%^0"
```

# License

This dataset is released under the Apache License 2.0. You are free to use, modify, and distribute this dataset under the terms of the Apache License. 

# Citation

```bibtex
@misc{miranda2021ultimateutils,
    title={Ultimate Utils - the Ultimate Utils Library for Machine Learning and Artificial Intelligence},
    author={Brando Miranda},
    year={2021},
    url={https://github.com/brando90/ultimate-utils},
    note={Available at: \url{https://www.ideals.illinois.edu/handle/2142/112797}},
    abstract={Ultimate Utils is a comprehensive library providing utility functions and tools to facilitate efficient machine learning and AI research, including efficient tensor manipulations and gradient handling with methods such as `detach()` for creating gradient-free tensors.}
}
```

# Code that generate it

```python
#ref: https://chatgpt.com/c/671ff56a-563c-8001-afd5-94632fe63d67 
import os
import random
import string
from huggingface_hub import login
from datasets import Dataset, DatasetDict

# Function to load the Hugging Face API token from a file
def load_token(file_path: str) -> str:
    """Load API token from a specified file path."""
    with open(os.path.expanduser(file_path)) as f:
        return f.read().strip()

# Function to log in to Hugging Face using a token
def login_to_huggingface(token: str) -> None:
    """Authenticate with Hugging Face Hub."""
    login(token=token)
    print("Login successful")

# Function to generate a random word of a given length
def generate_random_word(length: int, character_pool: str) -> str:
    """Generate a random word of specified length from a character pool."""
    return "".join(random.choice(character_pool) for _ in range(length))

# Function to generate a single random sentence with "words" of random lengths
def generate_random_sentence(sequence_length: int, character_pool: str) -> str:
    """Generate a random sentence of approximately sequence_length characters."""
    words = [
        generate_random_word(random.randint(3, 10), character_pool)
        for _ in range(sequence_length // 10)  # Estimate number of words to fit length
    ]
    sentence = " ".join(words)
    # print(f"Generated sentence length: {len(sentence)}\a")  # Print length and sound alert
    return sentence

# Function to create a dataset of random "sentences"
def create_random_text_dataset(num_sequences: int, sequence_length: int, character_pool: str) -> Dataset:
    """Create a dataset with random text sequences."""
    data = {
        "text": [generate_random_sentence(sequence_length, character_pool) for _ in range(num_sequences)]
    }
    return Dataset.from_dict(data)

# Main function to generate, inspect, and upload dataset with train, validation, and test splits
def main() -> None:
    # Step 1: Load token and log in
    key_file_path: str = "/lfs/skampere1/0/brando9/keys/brandos_hf_token.txt"
    token: str = load_token(key_file_path)
    login_to_huggingface(token)

    # Step 2: Dataset parameters
    num_sequences_train: int = 5000
    num_sequences_val: int = 5000
    num_sequences_test: int = 5000
    sequence_length: int = 512
    character_pool: str = string.printable  # All ASCII characters (letters, digits, punctuation, whitespace)

    # Step 3: Create datasets for each split
    train_dataset = create_random_text_dataset(num_sequences_train, sequence_length, character_pool)
    val_dataset = create_random_text_dataset(num_sequences_val, sequence_length, character_pool)
    test_dataset = create_random_text_dataset(num_sequences_test, sequence_length, character_pool)

    # Step 4: Combine into a DatasetDict with train, validation, and test splits
    dataset_dict = DatasetDict({
        "train": train_dataset,
        "validation": val_dataset,
        "test": test_dataset
    })

    # Step 5: Print a sample of the train dataset for verification
    print("Sample of train dataset:", train_dataset[:5])

    # Step 6: Push the dataset to Hugging Face Hub
    dataset_name: str = "brando/random-ascii-dataset"
    dataset_dict.push_to_hub(dataset_name)
    print(f"Dataset uploaded to https://huggingface.co./datasets/{dataset_name}")

# Run the main function
if __name__ == "__main__":
    main()

```