agoor97's picture
Training Complete
ff0a9d5
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-emotions-dataset-2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.937
          - name: F1
            type: f1
            value: 0.9369365562537507

distilbert-base-uncased-finetuned-emotions-dataset-2

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2689
  • Accuracy: 0.937
  • F1: 0.9369

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6095 1.0 500 0.2145 0.9245 0.9250
0.1686 2.0 1000 0.1670 0.933 0.9316
0.1164 3.0 1500 0.1631 0.939 0.9394
0.0924 4.0 2000 0.1829 0.938 0.9366
0.072 5.0 2500 0.1929 0.9355 0.9354
0.0545 6.0 3000 0.2117 0.9355 0.9357
0.0432 7.0 3500 0.2222 0.934 0.9340
0.0298 8.0 4000 0.2553 0.939 0.9385
0.0248 9.0 4500 0.2667 0.936 0.9358
0.0199 10.0 5000 0.2689 0.937 0.9369

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0