--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotions-dataset-2 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.937 - name: F1 type: f1 value: 0.9369365562537507 --- # distilbert-base-uncased-finetuned-emotions-dataset-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2689 - Accuracy: 0.937 - F1: 0.9369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6095 | 1.0 | 500 | 0.2145 | 0.9245 | 0.9250 | | 0.1686 | 2.0 | 1000 | 0.1670 | 0.933 | 0.9316 | | 0.1164 | 3.0 | 1500 | 0.1631 | 0.939 | 0.9394 | | 0.0924 | 4.0 | 2000 | 0.1829 | 0.938 | 0.9366 | | 0.072 | 5.0 | 2500 | 0.1929 | 0.9355 | 0.9354 | | 0.0545 | 6.0 | 3000 | 0.2117 | 0.9355 | 0.9357 | | 0.0432 | 7.0 | 3500 | 0.2222 | 0.934 | 0.9340 | | 0.0298 | 8.0 | 4000 | 0.2553 | 0.939 | 0.9385 | | 0.0248 | 9.0 | 4500 | 0.2667 | 0.936 | 0.9358 | | 0.0199 | 10.0 | 5000 | 0.2689 | 0.937 | 0.9369 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0