afrideva's picture
Upload README.md with huggingface_hub
edb90e0
---
base_model: BEE-spoke-data/verysmol_llama-v11-KIx2
datasets:
- BEE-spoke-data/knowledge-inoc-concat-v1
inference: false
license: apache-2.0
metrics:
- accuracy
model_creator: BEE-spoke-data
model_name: verysmol_llama-v11-KIx2
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- generated_from_trainer
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
widget:
- example_title: El Microondas
text: My name is El Microondas the Wise and
- example_title: Kennesaw State University
text: Kennesaw State University is a public
- example_title: Bungie
text: Bungie Studios is an American video game developer. They are most famous for
developing the award winning Halo series of video games. They also made Destiny.
The studio was founded
- example_title: Mona Lisa
text: The Mona Lisa is a world-renowned painting created by
- example_title: Harry Potter Series
text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
- example_title: Riddle
text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
have water, but no fish. What am I?
Answer:'
- example_title: Photosynthesis
text: The process of photosynthesis involves the conversion of
- example_title: Story Continuation
text: Jane went to the store to buy some groceries. She picked up apples, oranges,
and a loaf of bread. When she got home, she realized she forgot
- example_title: Math Problem
text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
they meet if the distance between the stations is 300 miles?
To determine'
- example_title: Algorithm Definition
text: In the context of computer programming, an algorithm is
---
# BEE-spoke-data/verysmol_llama-v11-KIx2-GGUF
Quantized GGUF model files for [verysmol_llama-v11-KIx2](https://huggingface.co./BEE-spoke-data/verysmol_llama-v11-KIx2) from [BEE-spoke-data](https://huggingface.co./BEE-spoke-data)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [verysmol_llama-v11-kix2.fp16.gguf](https://huggingface.co./afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.fp16.gguf) | fp16 | 116.89 MB |
| [verysmol_llama-v11-kix2.q2_k.gguf](https://huggingface.co./afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q2_k.gguf) | q2_k | 30.14 MB |
| [verysmol_llama-v11-kix2.q3_k_m.gguf](https://huggingface.co./afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q3_k_m.gguf) | q3_k_m | 33.71 MB |
| [verysmol_llama-v11-kix2.q4_k_m.gguf](https://huggingface.co./afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q4_k_m.gguf) | q4_k_m | 38.34 MB |
| [verysmol_llama-v11-kix2.q5_k_m.gguf](https://huggingface.co./afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q5_k_m.gguf) | q5_k_m | 43.21 MB |
| [verysmol_llama-v11-kix2.q6_k.gguf](https://huggingface.co./afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q6_k.gguf) | q6_k | 48.39 MB |
| [verysmol_llama-v11-kix2.q8_0.gguf](https://huggingface.co./afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q8_0.gguf) | q8_0 | 62.45 MB |
## Original Model Card:
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# verysmol_llama-v11-KIx2
## Model description
This model is a fine-tuned version of v10 (refinedweb-3m dedup) further trained for 2 epochs on KI dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8876
- Accuracy: 0.4502
---
## evals
`hf-causal-experimental (pretrained=pszemraj/verysmol_llama-v11-KIx2,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16`
| Task |Version| Metric | Value | |Stderr|
|--------------|------:|--------|-------:|---|-----:|
|arc_easy | 0|acc | 0.4024|± |0.0101|
| | |acc_norm| 0.3788|± |0.0100|
|boolq | 1|acc | 0.6199|± |0.0085|
|lambada_openai| 0|ppl |111.9939|± |4.6906|
| | |acc | 0.2354|± |0.0059|
|openbookqa | 0|acc | 0.1440|± |0.0157|
| | |acc_norm| 0.2760|± |0.0200|
|piqa | 0|acc | 0.5713|± |0.0115|
| | |acc_norm| 0.5664|± |0.0116|
|winogrande | 0|acc | 0.5201|± |0.0140|
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.1971|± |0.0116|
| | |acc_norm|0.2278|± |0.0123|
| Task |Version| Metric |Value | |Stderr|
|---------|------:|--------|-----:|---|-----:|
|hellaswag| 0|acc |0.2618|± |0.0088|
| | |acc_norm|0.2797|± |0.0090|
| Task |Version|Metric|Value | |Stderr|
|-------------|------:|------|-----:|---|-----:|
|truthfulqa_mc| 1|mc1 |0.2509|± |0.0152|
| | |mc2 |0.4492|± |0.0156|
---
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00014
- train_batch_size: 16
- eval_batch_size: 16
- seed: 17514
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.0681 | 0.03 | 150 | 3.0689 | 0.4259 |
| 3.0113 | 0.07 | 300 | 3.0433 | 0.4278 |
| 2.9468 | 0.1 | 450 | 3.0362 | 0.4288 |
| 3.0162 | 0.13 | 600 | 3.0148 | 0.4326 |
| 2.9531 | 0.17 | 750 | 3.0012 | 0.4341 |
| 2.9282 | 0.2 | 900 | 2.9923 | 0.4358 |
| 2.9485 | 0.23 | 1050 | 2.9845 | 0.4357 |
| 2.9365 | 0.27 | 1200 | 2.9749 | 0.4375 |
...
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.8215 | 1.7 | 7650 | 2.8943 | 0.4496 |
| 2.7714 | 1.74 | 7800 | 2.8914 | 0.4501 |
| 2.8132 | 1.77 | 7950 | 2.8913 | 0.4500 |
| 2.8505 | 1.8 | 8100 | 2.8906 | 0.4502 |
| 2.8294 | 1.84 | 8250 | 2.8901 | 0.4502 |
| 2.7977 | 1.87 | 8400 | 2.8891 | 0.4499 |
| 2.7501 | 1.9 | 8550 | 2.8878 | 0.4505 |
| 2.8038 | 1.94 | 8700 | 2.8883 | 0.4504 |
| 2.7547 | 1.97 | 8850 | 2.8876 | 0.4502 |
---