Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BEE-spoke-data/verysmol_llama-v11-KIx2
|
3 |
+
datasets:
|
4 |
+
- BEE-spoke-data/knowledge-inoc-concat-v1
|
5 |
+
inference: false
|
6 |
+
license: apache-2.0
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model_creator: BEE-spoke-data
|
10 |
+
model_name: verysmol_llama-v11-KIx2
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
quantized_by: afrideva
|
13 |
+
tags:
|
14 |
+
- generated_from_trainer
|
15 |
+
- gguf
|
16 |
+
- ggml
|
17 |
+
- quantized
|
18 |
+
- q2_k
|
19 |
+
- q3_k_m
|
20 |
+
- q4_k_m
|
21 |
+
- q5_k_m
|
22 |
+
- q6_k
|
23 |
+
- q8_0
|
24 |
+
widget:
|
25 |
+
- example_title: El Microondas
|
26 |
+
text: My name is El Microondas the Wise and
|
27 |
+
- example_title: Kennesaw State University
|
28 |
+
text: Kennesaw State University is a public
|
29 |
+
- example_title: Bungie
|
30 |
+
text: Bungie Studios is an American video game developer. They are most famous for
|
31 |
+
developing the award winning Halo series of video games. They also made Destiny.
|
32 |
+
The studio was founded
|
33 |
+
- example_title: Mona Lisa
|
34 |
+
text: The Mona Lisa is a world-renowned painting created by
|
35 |
+
- example_title: Harry Potter Series
|
36 |
+
text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
|
37 |
+
- example_title: Riddle
|
38 |
+
text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
|
39 |
+
have water, but no fish. What am I?
|
40 |
+
|
41 |
+
Answer:'
|
42 |
+
- example_title: Photosynthesis
|
43 |
+
text: The process of photosynthesis involves the conversion of
|
44 |
+
- example_title: Story Continuation
|
45 |
+
text: Jane went to the store to buy some groceries. She picked up apples, oranges,
|
46 |
+
and a loaf of bread. When she got home, she realized she forgot
|
47 |
+
- example_title: Math Problem
|
48 |
+
text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
|
49 |
+
and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
|
50 |
+
they meet if the distance between the stations is 300 miles?
|
51 |
+
|
52 |
+
To determine'
|
53 |
+
- example_title: Algorithm Definition
|
54 |
+
text: In the context of computer programming, an algorithm is
|
55 |
+
---
|
56 |
+
# BEE-spoke-data/verysmol_llama-v11-KIx2-GGUF
|
57 |
+
|
58 |
+
Quantized GGUF model files for [verysmol_llama-v11-KIx2](https://huggingface.co/BEE-spoke-data/verysmol_llama-v11-KIx2) from [BEE-spoke-data](https://huggingface.co/BEE-spoke-data)
|
59 |
+
|
60 |
+
|
61 |
+
| Name | Quant method | Size |
|
62 |
+
| ---- | ---- | ---- |
|
63 |
+
| [verysmol_llama-v11-kix2.fp16.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.fp16.gguf) | fp16 | 116.89 MB |
|
64 |
+
| [verysmol_llama-v11-kix2.q2_k.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q2_k.gguf) | q2_k | 30.14 MB |
|
65 |
+
| [verysmol_llama-v11-kix2.q3_k_m.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q3_k_m.gguf) | q3_k_m | 33.71 MB |
|
66 |
+
| [verysmol_llama-v11-kix2.q4_k_m.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q4_k_m.gguf) | q4_k_m | 38.34 MB |
|
67 |
+
| [verysmol_llama-v11-kix2.q5_k_m.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q5_k_m.gguf) | q5_k_m | 43.21 MB |
|
68 |
+
| [verysmol_llama-v11-kix2.q6_k.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q6_k.gguf) | q6_k | 48.39 MB |
|
69 |
+
| [verysmol_llama-v11-kix2.q8_0.gguf](https://huggingface.co/afrideva/verysmol_llama-v11-KIx2-GGUF/resolve/main/verysmol_llama-v11-kix2.q8_0.gguf) | q8_0 | 62.45 MB |
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
## Original Model Card:
|
74 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
75 |
+
should probably proofread and complete it, then remove this comment. -->
|
76 |
+
|
77 |
+
# verysmol_llama-v11-KIx2
|
78 |
+
|
79 |
+
## Model description
|
80 |
+
|
81 |
+
This model is a fine-tuned version of v10 (refinedweb-3m dedup) further trained for 2 epochs on KI dataset.
|
82 |
+
|
83 |
+
It achieves the following results on the evaluation set:
|
84 |
+
- Loss: 2.8876
|
85 |
+
- Accuracy: 0.4502
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
## evals
|
90 |
+
|
91 |
+
`hf-causal-experimental (pretrained=pszemraj/verysmol_llama-v11-KIx2,revision=main,trust_remote_code=True,dtype='float'), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16`
|
92 |
+
|
93 |
+
| Task |Version| Metric | Value | |Stderr|
|
94 |
+
|--------------|------:|--------|-------:|---|-----:|
|
95 |
+
|arc_easy | 0|acc | 0.4024|± |0.0101|
|
96 |
+
| | |acc_norm| 0.3788|± |0.0100|
|
97 |
+
|boolq | 1|acc | 0.6199|± |0.0085|
|
98 |
+
|lambada_openai| 0|ppl |111.9939|± |4.6906|
|
99 |
+
| | |acc | 0.2354|± |0.0059|
|
100 |
+
|openbookqa | 0|acc | 0.1440|± |0.0157|
|
101 |
+
| | |acc_norm| 0.2760|± |0.0200|
|
102 |
+
|piqa | 0|acc | 0.5713|± |0.0115|
|
103 |
+
| | |acc_norm| 0.5664|± |0.0116|
|
104 |
+
|winogrande | 0|acc | 0.5201|± |0.0140|
|
105 |
+
|
106 |
+
| Task |Version| Metric |Value | |Stderr|
|
107 |
+
|-------------|------:|--------|-----:|---|-----:|
|
108 |
+
|arc_challenge| 0|acc |0.1971|± |0.0116|
|
109 |
+
| | |acc_norm|0.2278|± |0.0123|
|
110 |
+
|
111 |
+
| Task |Version| Metric |Value | |Stderr|
|
112 |
+
|---------|------:|--------|-----:|---|-----:|
|
113 |
+
|hellaswag| 0|acc |0.2618|± |0.0088|
|
114 |
+
| | |acc_norm|0.2797|± |0.0090|
|
115 |
+
|
116 |
+
| Task |Version|Metric|Value | |Stderr|
|
117 |
+
|-------------|------:|------|-----:|---|-----:|
|
118 |
+
|truthfulqa_mc| 1|mc1 |0.2509|± |0.0152|
|
119 |
+
| | |mc2 |0.4492|± |0.0156|
|
120 |
+
|
121 |
+
---
|
122 |
+
|
123 |
+
## Training procedure
|
124 |
+
|
125 |
+
### Training hyperparameters
|
126 |
+
|
127 |
+
The following hyperparameters were used during training:
|
128 |
+
- learning_rate: 0.00014
|
129 |
+
- train_batch_size: 16
|
130 |
+
- eval_batch_size: 16
|
131 |
+
- seed: 17514
|
132 |
+
- gradient_accumulation_steps: 8
|
133 |
+
- total_train_batch_size: 128
|
134 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06
|
135 |
+
- lr_scheduler_type: inverse_sqrt
|
136 |
+
- lr_scheduler_warmup_ratio: 0.05
|
137 |
+
- num_epochs: 2.0
|
138 |
+
|
139 |
+
### Training results
|
140 |
+
|
141 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
142 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
143 |
+
| 3.0681 | 0.03 | 150 | 3.0689 | 0.4259 |
|
144 |
+
| 3.0113 | 0.07 | 300 | 3.0433 | 0.4278 |
|
145 |
+
| 2.9468 | 0.1 | 450 | 3.0362 | 0.4288 |
|
146 |
+
| 3.0162 | 0.13 | 600 | 3.0148 | 0.4326 |
|
147 |
+
| 2.9531 | 0.17 | 750 | 3.0012 | 0.4341 |
|
148 |
+
| 2.9282 | 0.2 | 900 | 2.9923 | 0.4358 |
|
149 |
+
| 2.9485 | 0.23 | 1050 | 2.9845 | 0.4357 |
|
150 |
+
| 2.9365 | 0.27 | 1200 | 2.9749 | 0.4375 |
|
151 |
+
|
152 |
+
...
|
153 |
+
|
154 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
155 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
156 |
+
| 2.8215 | 1.7 | 7650 | 2.8943 | 0.4496 |
|
157 |
+
| 2.7714 | 1.74 | 7800 | 2.8914 | 0.4501 |
|
158 |
+
| 2.8132 | 1.77 | 7950 | 2.8913 | 0.4500 |
|
159 |
+
| 2.8505 | 1.8 | 8100 | 2.8906 | 0.4502 |
|
160 |
+
| 2.8294 | 1.84 | 8250 | 2.8901 | 0.4502 |
|
161 |
+
| 2.7977 | 1.87 | 8400 | 2.8891 | 0.4499 |
|
162 |
+
| 2.7501 | 1.9 | 8550 | 2.8878 | 0.4505 |
|
163 |
+
| 2.8038 | 1.94 | 8700 | 2.8883 | 0.4504 |
|
164 |
+
| 2.7547 | 1.97 | 8850 | 2.8876 | 0.4502 |
|
165 |
+
|
166 |
+
---
|