|
--- |
|
license: mit |
|
datasets: |
|
- Abirate/english_quotes |
|
language: |
|
- en |
|
library_name: adapter-transformers |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This model is a PEFT model based on TurkuNLP/gpt3-finnish-small |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Model type:** PEFT Model |
|
- **Language(s) (NLP):** EN |
|
- **License:** mit |
|
- **Finetuned from model [optional]:** TurkuNLP/gpt3-finnish-small |
|
|
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
```python |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
peft_model_id = "Yooko/gpt3-finnish-small-ft-AbirateEN" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
# Load the Lora model |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
``` |
|
### Downstream Use [optional] |
|
|
|
```python |
|
batch = tokenizer("Two things are infinite: ", return_tensors='pt') |
|
|
|
with torch.cuda.amp.autocast(): |
|
output_tokens = model.generate(**batch, max_new_tokens=50) |
|
|
|
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
|
|
|