File size: 1,519 Bytes
29d92a8 4258dd6 3cb312c 4258dd6 3cb312c 4258dd6 24b4bf9 4258dd6 24b4bf9 4258dd6 24b4bf9 4258dd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: mit
datasets:
- Abirate/english_quotes
language:
- en
library_name: adapter-transformers
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This model is a PEFT model based on TurkuNLP/gpt3-finnish-small
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Model type:** PEFT Model
- **Language(s) (NLP):** EN
- **License:** mit
- **Finetuned from model [optional]:** TurkuNLP/gpt3-finnish-small
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "Yooko/gpt3-finnish-small-ft-AbirateEN"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
```
### Downstream Use [optional]
```python
batch = tokenizer("Two things are infinite: ", return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=50)
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
```
|