TabPFN-v2-reg / README.md
noahho's picture
Update README.md
e3f6f01 verified
|
raw
history blame
1.98 kB
---
pipeline_tag: tabular-regression
---
# TabPFN v2: A Tabular Foundation Model
TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.
## Installation
```bash
pip install tabpfn
```
## Model Details
- **Developed by:** Prior Labs
- **Model type:** Transformer-based foundation model for tabular data
- **License:** [Prior Labs License (Apache 2.0 with additional attribution requirement)](https://priorlabs.ai/tabpfn-license/)
- **Paper:** Published in Nature (January 2025)
- **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)
### 📚 Citation
```bibtex
@article{hollmann2025tabpfn,
title={Accurate predictions on small data with a tabular foundation model},
author={Hollmann, Noah and M{\"u}ller, Samuel and Purucker, Lennart and
Krishnakumar, Arjun and K{\"o}rfer, Max and Hoo, Shi Bin and
Schirrmeister, Robin Tibor and Hutter, Frank},
journal={Nature},
year={2025},
month={01},
day={09},
doi={10.1038/s41586-024-08328-6},
publisher={Springer Nature},
url={https://www.nature.com/articles/s41586-024-08328-6},
}
```
## Quick Start
📚 For detailed usage examples and best practices, check out:
- [Interactive Colab Tutorial](https://tinyurl.com/tabpfn-colab-api)
## Technical Requirements
- Python ≥ 3.9
- PyTorch ≥ 2.1
- scikit-learn ≥ 1.0
- Hardware: 16GB+ RAM, CPU (GPU optional)
## Limitations
- Not designed for very large datasets
- Not suitable for non-tabular data formats
## Resources
- **Documentation:** https://priorlabs.ai/docs
- **Source:** https://github.com/priorlabs/tabpfn
- **Paper:** https://www.nature.com/articles/s41586-024-08328-6
### Team
- Noah Hollmann
- Samuel Müller
- Lennart Purucker
- Arjun Krishnakumar
- Max Körfer
- Shi Bin Hoo
- Robin Tibor Schirrmeister
- Frank Hutter
- Eddie Bergman
- Léo Grinsztajn