File size: 1,981 Bytes
9ff6a7b 71a85c4 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b df6ba44 9ff6a7b 2274b01 e3f6f01 df6ba44 9ff6a7b 2274b01 e3f6f01 2274b01 e3f6f01 2274b01 9ff6a7b df6ba44 9ff6a7b 2274b01 9ff6a7b df6ba44 2274b01 df6ba44 e3f6f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
pipeline_tag: tabular-regression
---
# TabPFN v2: A Tabular Foundation Model
TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.
## Installation
```bash
pip install tabpfn
```
## Model Details
- **Developed by:** Prior Labs
- **Model type:** Transformer-based foundation model for tabular data
- **License:** [Prior Labs License (Apache 2.0 with additional attribution requirement)](https://priorlabs.ai/tabpfn-license/)
- **Paper:** Published in Nature (January 2025)
- **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)
### 📚 Citation
```bibtex
@article{hollmann2025tabpfn,
title={Accurate predictions on small data with a tabular foundation model},
author={Hollmann, Noah and M{\"u}ller, Samuel and Purucker, Lennart and
Krishnakumar, Arjun and K{\"o}rfer, Max and Hoo, Shi Bin and
Schirrmeister, Robin Tibor and Hutter, Frank},
journal={Nature},
year={2025},
month={01},
day={09},
doi={10.1038/s41586-024-08328-6},
publisher={Springer Nature},
url={https://www.nature.com/articles/s41586-024-08328-6},
}
```
## Quick Start
📚 For detailed usage examples and best practices, check out:
- [Interactive Colab Tutorial](https://tinyurl.com/tabpfn-colab-api)
## Technical Requirements
- Python ≥ 3.9
- PyTorch ≥ 2.1
- scikit-learn ≥ 1.0
- Hardware: 16GB+ RAM, CPU (GPU optional)
## Limitations
- Not designed for very large datasets
- Not suitable for non-tabular data formats
## Resources
- **Documentation:** https://priorlabs.ai/docs
- **Source:** https://github.com/priorlabs/tabpfn
- **Paper:** https://www.nature.com/articles/s41586-024-08328-6
### Team
- Noah Hollmann
- Samuel Müller
- Lennart Purucker
- Arjun Krishnakumar
- Max Körfer
- Shi Bin Hoo
- Robin Tibor Schirrmeister
- Frank Hutter
- Eddie Bergman
- Léo Grinsztajn |