Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,6 @@
|
|
2 |
pipeline_tag: tabular-regression
|
3 |
---
|
4 |
|
5 |
-
# WORK IN PROGRESS - NOT FUNCTIONAL
|
6 |
-
|
7 |
# TabPFN v2: A Tabular Foundation Model
|
8 |
|
9 |
TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.
|
@@ -16,22 +14,33 @@ pip install tabpfn
|
|
16 |
## Model Details
|
17 |
- **Developed by:** Prior Labs
|
18 |
- **Model type:** Transformer-based foundation model for tabular data
|
19 |
-
- **License:**
|
20 |
- **Paper:** Published in Nature (January 2024)
|
21 |
- **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)
|
22 |
|
23 |
-
### Citation
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## Quick Start
|
27 |
-
```python
|
28 |
-
from tabpfn import TabPFNRegressor
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
predictions = regressor.predict(X_test)
|
34 |
-
```
|
35 |
|
36 |
## Technical Requirements
|
37 |
- Python ≥ 3.9
|
@@ -46,7 +55,7 @@ predictions = regressor.predict(X_test)
|
|
46 |
## Resources
|
47 |
- **Documentation:** https://priorlabs.ai/docs
|
48 |
- **Source:** https://github.com/priorlabs/tabpfn
|
49 |
-
- **Paper:** https://
|
50 |
|
51 |
### Team
|
52 |
- Noah Hollmann
|
|
|
2 |
pipeline_tag: tabular-regression
|
3 |
---
|
4 |
|
|
|
|
|
5 |
# TabPFN v2: A Tabular Foundation Model
|
6 |
|
7 |
TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.
|
|
|
14 |
## Model Details
|
15 |
- **Developed by:** Prior Labs
|
16 |
- **Model type:** Transformer-based foundation model for tabular data
|
17 |
+
- **License:** [Prior Labs License (Apache 2.0 with additional attribution requirement)](https://priorlabs.ai/tabpfn-license/)
|
18 |
- **Paper:** Published in Nature (January 2024)
|
19 |
- **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)
|
20 |
|
21 |
+
### 📚 Citation
|
22 |
+
|
23 |
+
```bibtex
|
24 |
+
@article{hollmann2024tabpfn,
|
25 |
+
title={Accurate predictions on small data with a tabular foundation model},
|
26 |
+
author={Hollmann, Noah and M{\"u}ller, Samuel and Purucker, Lennart and
|
27 |
+
Krishnakumar, Arjun and K{\"o}rfer, Max and Hoo, Shi Bin and
|
28 |
+
Schirrmeister, Robin Tibor and Hutter, Frank},
|
29 |
+
journal={Nature},
|
30 |
+
year={2024},
|
31 |
+
month={01},
|
32 |
+
day={09},
|
33 |
+
doi={10.1038/s41586-024-08328-6},
|
34 |
+
publisher={Springer Nature},
|
35 |
+
url={https://www.nature.com/articles/s41586-024-08328-6},
|
36 |
+
}
|
37 |
+
```
|
38 |
|
39 |
## Quick Start
|
|
|
|
|
40 |
|
41 |
+
📚 For detailed usage examples and best practices, check out:
|
42 |
+
- [Interactive Colab Tutorial](https://tinyurl.com/tabpfn-colab-api)
|
43 |
+
|
|
|
|
|
44 |
|
45 |
## Technical Requirements
|
46 |
- Python ≥ 3.9
|
|
|
55 |
## Resources
|
56 |
- **Documentation:** https://priorlabs.ai/docs
|
57 |
- **Source:** https://github.com/priorlabs/tabpfn
|
58 |
+
- **Paper:** https://www.nature.com/articles/s41586-024-08328-6
|
59 |
|
60 |
### Team
|
61 |
- Noah Hollmann
|