noahho commited on
Commit
2274b01
·
verified ·
1 Parent(s): 03bec35

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -13
README.md CHANGED
@@ -2,8 +2,6 @@
2
  pipeline_tag: tabular-regression
3
  ---
4
 
5
- # WORK IN PROGRESS - NOT FUNCTIONAL
6
-
7
  # TabPFN v2: A Tabular Foundation Model
8
 
9
  TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.
@@ -16,22 +14,33 @@ pip install tabpfn
16
  ## Model Details
17
  - **Developed by:** Prior Labs
18
  - **Model type:** Transformer-based foundation model for tabular data
19
- - **License:** TBD
20
  - **Paper:** Published in Nature (January 2024)
21
  - **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)
22
 
23
- ### Citation
24
- TBD
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## Quick Start
27
- ```python
28
- from tabpfn import TabPFNRegressor
29
 
30
- # Initialize model
31
- regressor = TabPFNRegressor()
32
- regressor.fit(X_train, y_train)
33
- predictions = regressor.predict(X_test)
34
- ```
35
 
36
  ## Technical Requirements
37
  - Python ≥ 3.9
@@ -46,7 +55,7 @@ predictions = regressor.predict(X_test)
46
  ## Resources
47
  - **Documentation:** https://priorlabs.ai/docs
48
  - **Source:** https://github.com/priorlabs/tabpfn
49
- - **Paper:** https://doi.org/10.1038/s41586-024-08328-6
50
 
51
  ### Team
52
  - Noah Hollmann
 
2
  pipeline_tag: tabular-regression
3
  ---
4
 
 
 
5
  # TabPFN v2: A Tabular Foundation Model
6
 
7
  TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training.
 
14
  ## Model Details
15
  - **Developed by:** Prior Labs
16
  - **Model type:** Transformer-based foundation model for tabular data
17
+ - **License:** [Prior Labs License (Apache 2.0 with additional attribution requirement)](https://priorlabs.ai/tabpfn-license/)
18
  - **Paper:** Published in Nature (January 2024)
19
  - **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn)
20
 
21
+ ### 📚 Citation
22
+
23
+ ```bibtex
24
+ @article{hollmann2024tabpfn,
25
+ title={Accurate predictions on small data with a tabular foundation model},
26
+ author={Hollmann, Noah and M{\"u}ller, Samuel and Purucker, Lennart and
27
+ Krishnakumar, Arjun and K{\"o}rfer, Max and Hoo, Shi Bin and
28
+ Schirrmeister, Robin Tibor and Hutter, Frank},
29
+ journal={Nature},
30
+ year={2024},
31
+ month={01},
32
+ day={09},
33
+ doi={10.1038/s41586-024-08328-6},
34
+ publisher={Springer Nature},
35
+ url={https://www.nature.com/articles/s41586-024-08328-6},
36
+ }
37
+ ```
38
 
39
  ## Quick Start
 
 
40
 
41
+ 📚 For detailed usage examples and best practices, check out:
42
+ - [Interactive Colab Tutorial](https://tinyurl.com/tabpfn-colab-api)
43
+
 
 
44
 
45
  ## Technical Requirements
46
  - Python ≥ 3.9
 
55
  ## Resources
56
  - **Documentation:** https://priorlabs.ai/docs
57
  - **Source:** https://github.com/priorlabs/tabpfn
58
+ - **Paper:** https://www.nature.com/articles/s41586-024-08328-6
59
 
60
  ### Team
61
  - Noah Hollmann