noahho commited on
Commit
9ff6a7b
·
0 Parent(s):

Initial commit

Browse files
.DS_Store ADDED
Binary file (12.3 kB). View file
 
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
DUMMY.md ADDED
File without changes
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ extra_gated_prompt: |-
3
+ By accessing TabPFN, you agree to:
4
+ 1. Not use the model in ways that could harm individuals or communities
5
+ 2. Comply with all applicable laws and regulations
6
+ 3. Properly cite the model and its creators in any resulting publications
7
+ 4. Report any discovered vulnerabilities or safety concerns to Prior Labs
8
+ extra_gated_fields:
9
+ Organization:
10
+ type: text
11
+ required: true
12
+ description: Company or institution you represent
13
+ Role:
14
+ type: text
15
+ required: true
16
+ description: Your role in the organization
17
+ Country:
18
+ type: country
19
+ required: true
20
+ description: Country where you or your organization is based
21
+ Intended Use:
22
+ type: select
23
+ required: true
24
+ options:
25
+ - Academic Research
26
+ - Education/Teaching
27
+ - Commercial Evaluation
28
+ - Non-profit Use
29
+ - Personal Learning
30
+ - label: Other
31
+ value: other
32
+ description: Primary intended use of TabPFN
33
+ Industry:
34
+ type: select
35
+ required: true
36
+ options:
37
+ - Healthcare/Life Sciences
38
+ - Financial Services
39
+ - Technology
40
+ - Education
41
+ - Manufacturing
42
+ - Research Institution
43
+ - label: Other
44
+ value: other
45
+ description: Your industry sector
46
+ Dataset Size:
47
+ type: select
48
+ required: true
49
+ options:
50
+ - <1000 rows
51
+ - 1000-10000 rows
52
+ - 10000-100000 rows
53
+ - '>100000 rows'
54
+ description: Typical size of datasets you plan to use
55
+ License Agreement:
56
+ type: checkbox
57
+ required: true
58
+ label: >-
59
+ I agree to the terms of the non-commercial license for research and
60
+ evaluation
61
+ Contact Permission:
62
+ type: checkbox
63
+ required: false
64
+ label: Prior Labs may contact me about my use case and provide support (optional)
65
+ pipeline_tag: tabular-classification
66
+ ---
67
+
68
+ # Model Card for TabPFN-v2
69
+
70
+ TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular datasets without requiring task-specific training.
71
+
72
+ ## Model Details
73
+
74
+ ### Model Description
75
+
76
+ TabPFN is a novel approach to tabular data modeling that uses transformer architectures combined with prior knowledge injection to create a foundation model specifically designed for tabular data tasks.
77
+
78
+ - **Developed by:** Prior Labs
79
+ - **Model type:** Transformer-based foundation model for tabular data
80
+ - **Language(s):** Python
81
+ - **License:** Dual licensing - Open source for research/non-commercial use
82
+ - **Finetuned from model:** Custom architecture, trained from scratch
83
+
84
+ ### Model Sources
85
+
86
+ - **Repository:** https://github.com/priorlabs/tabpfn
87
+ - **Paper:** [More Information Needed]
88
+ - **Demo:** Available via API access
89
+
90
+ ## Uses
91
+
92
+ ### Direct Use
93
+
94
+ TabPFN can be directly used for:
95
+ - Classification tasks on small to medium-sized tabular datasets
96
+ - Automated machine learning workflows
97
+ - Quick prototyping and baseline model creation
98
+ - Transfer learning applications for tabular data
99
+
100
+ ### Downstream Use
101
+
102
+ The model can be used as:
103
+ - A feature extractor for downstream tasks
104
+ - A foundation for transfer learning on domain-specific tabular data
105
+ - A component in automated ML pipelines
106
+ - A baseline model for benchmarking
107
+
108
+ ### Out-of-Scope Use
109
+
110
+ - The model is not designed for:
111
+ - Very large datasets (currently optimized for smaller datasets)
112
+ - Non-tabular data formats
113
+ - Time series forecasting
114
+ - Direct regression tasks
115
+
116
+ ## Bias, Risks, and Limitations
117
+
118
+ - Performance may vary based on dataset size and characteristics
119
+ - Model behavior heavily depends on the quality and representativeness of training data
120
+ - May not perform optimally on highly imbalanced datasets
121
+ - Resource intensive for very large datasets
122
+
123
+ ### Recommendations
124
+
125
+ - Use on datasets with clear structure and well-defined features
126
+ - Validate model outputs especially for sensitive applications
127
+ - Consider dataset size limitations when applying the model
128
+ - Monitor performance across different subgroups in the data
129
+
130
+ ## How to Get Started with the Model
131
+
132
+ ```python
133
+ from tabpfn import TabPFNClassifier
134
+
135
+ # Initialize model
136
+ classifier = TabPFNClassifier()
137
+
138
+ # Fit and predict
139
+ classifier.fit(X_train, y_train)
140
+ predictions = classifier.predict(X_test)
141
+ ```
142
+
143
+ ## Training Details
144
+
145
+ ### Training Data
146
+
147
+ [More Information Needed]
148
+
149
+ ### Training Procedure
150
+
151
+ #### Training Hyperparameters
152
+
153
+ - **Training regime:** Mixed precision training
154
+
155
+ ## Evaluation
156
+
157
+ ### Testing Data, Factors & Metrics
158
+
159
+ #### Metrics
160
+
161
+ - Classification accuracy
162
+ - F1 score
163
+ - ROC-AUC
164
+ - Precision-Recall curves
165
+
166
+ ### Results
167
+
168
+ [More Information Needed]
169
+
170
+ ## Environmental Impact
171
+
172
+ - **Hardware Type:** [More Information Needed]
173
+ - **Hours used:** [More Information Needed]
174
+ - **Cloud Provider:** [More Information Needed]
175
+ - **Compute Region:** [More Information Needed]
176
+ - **Carbon Emitted:** [More Information Needed]
177
+
178
+ ## Technical Specifications
179
+
180
+ ### Model Architecture and Objective
181
+
182
+ TabPFN uses a transformer-based architecture specifically designed for tabular data processing, with modifications to handle varying input sizes and feature types.
183
+
184
+ ### Compute Infrastructure
185
+
186
+ #### Hardware
187
+
188
+ Recommended minimum specifications:
189
+ - CPU: Modern multi-core processor
190
+ - RAM: 16GB+
191
+ - GPU: Optional, CPU inference supported
192
+
193
+ #### Software
194
+
195
+ - Python 3.7+
196
+ - Key dependencies: PyTorch, NumPy, Pandas
197
+
198
+ ## Model Card Contact
199
+
200
+ For more information, contact Prior Labs.
tabpfn-v2-regression-09gpqh39.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86a5b6832fdaeae3bb50eb2fbc349198b43baa965dcda9ef3b8e10fb809c1551
3
+ size 44398487
tabpfn-v2-regression-2noar4o2.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2d4a06eeb4521dee71fc68d819e277ffb97614cc3695dc9ac3030dd9da36c21
3
+ size 44398487
tabpfn-v2-regression-5wof9ojf.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed278fb0d67a90de2f686db5c5a1cf46f572fedf1533bbbcb13c8f9d7551091b
3
+ size 23988347
tabpfn-v2-regression-wyl4o83o.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fbafef1701600f9602a1ea6770714f08c439b8e17f8276853439cb60a43b2e8
3
+ size 23198551
tabpfn-v2-regression.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc04cbb29805f0dd0a20a6952c79ca1ad43733a9bcfafdf75caa680d543e4114
3
+ size 44409951