metadata
language:
- zh
- ja
- ko
- tw
license: apache-2.0
tags:
- moe
- merge
- mergekit
- lazymergekit
- MediaTek-Research/Breeze-7B-Instruct-v0.1
- augmxnt/shisa-7b-v1
- beomi/OPEN-SOLAR-KO-10.7B
model-index:
- name: EastAsia-4x7B-Moe-experiment
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 39.51
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Heng666/EastAsia-4x7B-Moe-experiment
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 48.92
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Heng666/EastAsia-4x7B-Moe-experiment
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 56.2
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Heng666/EastAsia-4x7B-Moe-experiment
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 49.83
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Heng666/EastAsia-4x7B-Moe-experiment
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.09
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Heng666/EastAsia-4x7B-Moe-experiment
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.15
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Heng666/EastAsia-4x7B-Moe-experiment
name: Open LLM Leaderboard
EastAsia-4x7B-Moe-experiment
EastAsia-4x7B-Moe-experiment is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
🧩 Configuration
gate_mode: hidden
dtype: bfloat16
base_model: mlabonne/Marcoro14-7B-slerp
experts:
- source_model: MediaTek-Research/Breeze-7B-Instruct-v0.1
positive_prompts:
- "翻譯"
- source_model: augmxnt/shisa-7b-v1
positive_prompts:
- "翻訳"
- source_model: beomi/OPEN-SOLAR-KO-10.7B
positive_prompts:
- "번역"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Heng666/EastAsia-4x7B-Moe-experiment"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 42.12 |
AI2 Reasoning Challenge (25-Shot) | 39.51 |
HellaSwag (10-Shot) | 48.92 |
MMLU (5-Shot) | 56.20 |
TruthfulQA (0-shot) | 49.83 |
Winogrande (5-shot) | 58.09 |
GSM8k (5-shot) | 0.15 |