EastAsia-4x7B-Moe-experiment
EastAsia-4x7B-Moe-experiment is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
🧩 Configuration
gate_mode: hidden
dtype: bfloat16
base_model: mlabonne/Marcoro14-7B-slerp
experts:
- source_model: MediaTek-Research/Breeze-7B-Instruct-v0.1
positive_prompts:
- "翻譯"
- source_model: augmxnt/shisa-7b-v1
positive_prompts:
- "翻訳"
- source_model: beomi/OPEN-SOLAR-KO-10.7B
positive_prompts:
- "번역"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Heng666/EastAsia-4x7B-Moe-experiment"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 42.12 |
AI2 Reasoning Challenge (25-Shot) | 39.51 |
HellaSwag (10-Shot) | 48.92 |
MMLU (5-Shot) | 56.20 |
TruthfulQA (0-shot) | 49.83 |
Winogrande (5-shot) | 58.09 |
GSM8k (5-shot) | 0.15 |
- Downloads last month
- 744
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Heng666/EastAsia-4x7B-Moe-experiment
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard39.510
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard48.920
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard56.200
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard49.830
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard58.090
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.150