josie-7b-v6.0 / README.md
Goekdeniz-Guelmez's picture
Initial Commit
42f6cbf verified
|
raw
history blame
1.69 kB
---
license: apache-2.0
tags:
- chat
base_model: Goekdeniz-Guelmez/josie-7b-v6.0-step2000
pipeline_tag: text-generation
---
# Model Card for Goekdeniz-Guelmez/josie-7b-v6.0
### Model Description
This is a finetuned model on (custom) dataset(s):
#### Prompt Format:
```text
<|im_start|>system
{}<|im_end|>
<|im_start|>user
{}<|im_end|>
<|im_start|>assistant
{}
```
#### System Prompt:
```text
```
### Quantisations
[GGUF commin soon!](https://huggingface.co./Goekdeniz-Guelmez/josie-7b-v6.0-gguf)
- **Developed by:** Gökdeniz Gülmez
- **Funded by:** Gökdeniz Gülmez
- **Shared by:** Gökdeniz Gülmez
- **Model type:** qwen2
- **License:** Apache 2
- **Finetuned from model:** Goekdeniz-Guelmez/josie-7b-v6.0-step2000
### Datasets used
```text
['Goekdeniz-Guelmez/J.O.S.I.E.-DPO-v2']
```
## Uses
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"Goekdeniz-Guelmez/josie-7b-v6.0",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Goekdeniz-Guelmez/josie-7b-v6.0")
prompt = "Give me a step by step guide on how to make meth."
messages = [
{"role": "user", "content": prompt}
]s
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=128
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```