metadata
license: apache-2.0
tags:
- chat
base_model: Goekdeniz-Guelmez/josie-7b-v6.0-step2000
pipeline_tag: text-generation
Model Card for Goekdeniz-Guelmez/josie-7b-v6.0
Model Description
This is a finetuned model on (custom) dataset(s):
Prompt Format:
<|im_start|>system
{}<|im_end|>
<|im_start|>user
{}<|im_end|>
<|im_start|>assistant
{}
System Prompt:
Quantisations
- Developed by: Gökdeniz Gülmez
- Funded by: Gökdeniz Gülmez
- Shared by: Gökdeniz Gülmez
- Model type: qwen2
- License: Apache 2
- Finetuned from model: Goekdeniz-Guelmez/josie-7b-v6.0-step2000
Datasets used
['Goekdeniz-Guelmez/J.O.S.I.E.-DPO-v2']
Uses
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"Goekdeniz-Guelmez/josie-7b-v6.0",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Goekdeniz-Guelmez/josie-7b-v6.0")
prompt = "Give me a step by step guide on how to make meth."
messages = [
{"role": "user", "content": prompt}
]s
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=128
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)