mon_nllb_1.3B
This model is a fine-tuned version of facebook/nllb-200-distilled-1.3B on an unknown dataset. It achieves the following results on the evaluation set:
- BLEU: 44.06
- chrF: 44.43
- METEOR: 0.537
Example Usage
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "Billyyy/mon_nllb_1.3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
text = "Сайн байна уу"?"
inputs = tokenizer(text, return_tensors="pt")
output_tokens = model.generate(**inputs)
translated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
print(translated_text)
Model description
This model was finetuned on Mongolian->English parallel dataset with LoRA
Training and evaluation data
Training data:
- 1M translation data from https://github.com/sharavsambuu/english-mongolian-nmt-dataset-augmentation?tab=readme-ov-file
- OpenSubtitles
- TED2020
Evaluation data:
- FLORES-200
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 40
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 160
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: FP16
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.3708 | 0.1522 | 1000 | 7.2420 |
7.25 | 0.3044 | 2000 | 7.2126 |
7.237 | 0.4567 | 3000 | 7.2120 |
7.2344 | 0.6089 | 4000 | 7.2137 |
7.2323 | 0.7611 | 5000 | 7.2130 |
7.2351 | 0.9133 | 6000 | 7.2121 |
7.222 | 1.0656 | 7000 | 7.2131 |
7.22 | 1.2178 | 8000 | 7.2122 |
7.2077 | 1.3700 | 9000 | 7.2131 |
7.2132 | 1.5223 | 10000 | 7.2132 |
7.2211 | 1.6745 | 11000 | 7.2128 |
7.2269 | 1.8267 | 12000 | 7.2131 |
7.2296 | 1.9789 | 13000 | 7.2132 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 174
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support translation models for peft library.
Model tree for Billyyy/mon_nllb_1.3B
Base model
facebook/nllb-200-distilled-1.3BDataset used to train Billyyy/mon_nllb_1.3B
Evaluation results
- BLEU on FLORES-200self-reported44.060
- chrF on FLORES-200self-reported44.430
- METEOR on FLORES-200self-reported0.537