microtest
This model is a fine-tuned version of bert-base-uncased on the azaheadhealth dataset. It achieves the following results on the evaluation set:
- Loss: 0.6111
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5955 | 0.5 | 1 | 0.6676 | 0.5 | 0.5 | 0.5 | 0.5 |
0.633 | 1.0 | 2 | 0.6111 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.13.2
- Downloads last month
- 93
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for zwellington/microtest
Base model
google-bert/bert-base-uncasedEvaluation results
- Accuracy on azaheadhealthtest set self-reported1.000
- F1 on azaheadhealthtest set self-reported1.000
- Precision on azaheadhealthtest set self-reported1.000
- Recall on azaheadhealthtest set self-reported1.000